首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high‐throughout bioanalytical method based on salting‐out‐assisted liquid/liquid extraction (SALLE) method with acetonitrile and mass spectrometry‐compatible salts followed by LC‐MS/MS analysis of trimetazidine in rat plasma is presented. It required only 50 μL of plasma and allows the use of minimal volumes of organic solvents. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step and the extract was diluted and injected into an LC‐MS/MS system with a cycle time of 2.5 min/sample. The retention times of trimetazidine and IS were approximately 1.1 and 1.7 min, respectively. Calibration curves were linear over the concentration range of 0.1–100 ng/mL, which can be extended to 500 ng/mL by dilution. The intra‐ and inter‐batch precision, accuracy and the relative standard deviation were all <15%. This method was successfully applied to determine trimetazidine concentrations in rat plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

4.
A high‐throughput, specific, and rapid liquid chromatography with tandem mass spectrometry method was established and validated for the simultaneous determination of atorvastatin and its two major metabolites, ortho‐hydroxyatorvastatin and para‐hydroxyatorvastatin, in human plasma. A simple salting‐out‐assisted liquid–liquid extraction using acetonitrile and a mass‐spectrometry‐friendly salt, ammonium acetate, was employed to extract the analytes from human plasma. A recovery of more than 81% for all analytes was achieved in 1 min extraction time. Chromatographic separation was performed on a Kinetex XB C18 column utilizing a gradient elution starting with a 60% of water solution (1% formic acid), followed by increasing percentages of acetonitrile. Analytes were detected on a tandem mass spectrometer equipped with an electrospray ionization source that was operated in the positive mode, using the transitions of m/z 559.3 → m/z 440.2 for atorvastatin, and m/z 575.3 → m/z 440.2 for both ortho‐ and para‐hydroxyatorvastatin. Deuterium‐labeled compounds were used as the internal standards. The method was validated over the concentration ranges of 0.0200–15.0 ng/mL for atorvastatin and ortho‐hydroxyatorvastatin, and 0.0100–2.00 ng/mL for para‐hydroxyatorvastatin with acceptable accuracy and precision. It was then successfully applied in a bioequivalence study of atorvastatin.  相似文献   

5.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, a sensitive, selective and reproducible liquid chromatography–tandem mass spectrometry method for the simultaneous determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and its active metabolites, 1‐caffeoyl‐5‐feruoylquinic acid and 1,5‐O‐diferuoylquinic acid, in human plasma, using puerarin as internal standard, was developed and validated. Analytes were extracted from plasma samples by liquid–liquid extraction with ethyl acetate, separated on a C18 reversed‐phase column with water containing 5 mM ammonium acetate and acetonitrile as the mobile phase and detected by electrospray ionization mass spectrometry in negative selected reaction monitoring mode. The accuracy and precision of the method were acceptable and linearity was good over the range 1–200 ng/mL for each analyte. In addition, the selectivity, extraction recovery and matrix effect were satisfactory too. The validated LC‐MS/MS method was successfully applied to phase II clinical pharmacokinetic study of 1,5‐DCQA in patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

10.
For sample assay to support global clinical studies of perampanel, a novel AMPA receptor antagonist, six chromatographic assay methods in human plasma were developed and fully validated at each laboratory using liquid chromatography with tandem mass spectrometry (LC‐MS/MS) or LC with fluorescence detection (LC‐FL). In this study, samples fortified with known perampanel concentrations were assayed at six laboratories to find whether assay data are comparable. Perampanel was extracted by protein precipitation or liquid–liquid extraction, chromatographed on a reverse‐phase column then detected by MS/MS or FL to achieve the limit of quantification of 0.25 or 1 ng/mL. Cross‐validation samples at four concentrations prepared at a central laboratory were determined at six laboratories and the mean accuracy at each concentration was within ±15% except the low concentration at one laboratory (relative error ?17.4%), suggesting that plasma concentrations of perampanel in clinical trials can be compared across laboratories.  相似文献   

11.
A rapid, simple and validated method based on liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) has been developed for the determination of granisetron in human plasma. Plasma samples were pre‐purified by protein precipitation procedure. The chromatographic separation was achieved with Synergi Polar‐RP (75 × 2 mm, 4 µm) column using a mixture of 5 mm pH4.0 ammonium formate and methanol (300:316, v/v) under isocratic conditions at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The analysis time was about 2.5 min. The method was fully validated over the concentration range 0.1–10 ng/mL. The lower limit of quantification was 0.1 ng/mL. Inter‐ and intra‐batch precision was <6.1% and the accuracy was within 95.6–100.0%. The mean extraction recovery was 96.3%. Selectivity, matrix effect and stability were also validated. The method was applied to the comparative pharmacokinetic study of granisetron in Chinese healthy subjects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Topotecan (TPT) is an important anti‐cancer drug that inhibits topoisomerase I. A sensitive and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method that potentially determines TPT in beagle dog plasma is needed for a bioequivalence study of TPT formulations. We developed and validated LC‐MS/MS to evaluate TPT in beagle dog plasma in terms of specificity, linearity, precision, accuracy, stability, extraction recovery and matrix effect. Plasma samples were treated with an OstroTM sorbent plate (a robust and effective tool) to eliminate phospholipids and proteins before analysis. TPT and camptothecin (internal standard) were separated on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) with 0.1% formic acid and methanol as the mobile phase at a flow rate of 0.25 mL/min. TPT was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode. The obtained lower limit of quantitation was 1 ng/mL (signal‐to‐noise ratio > 10). The standard calibration curve for TPT was linear (correlation coefficient > 0.99) at the concentration range of 1–400 ng/mL. The intra‐day and inter‐day precision, accuracy, stability, extraction recovery and matrix effect of TPT were within the acceptable limits. The validated method was successfully applied in a bioequivalence study of TPT in healthy beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

14.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

15.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients.  相似文献   

16.
A specific and robust LC–MS/MS method was developed and validated for the quantitative determination of GDC‐3280 in human plasma and urine. The nonspecific binding associated with urine samples was overcome by the addition of CHAPS. The sample volume was 25 μL for either matrix, and supported liquid extraction was employed for analyte extraction. d6‐GDC‐3280 was used as the internal standard. Linear standard curves (R2 > 0.9956) were established from 5.00 to 5000 ng/mL in both matrices with quantitation extended to 50,000 ng/mL through dilution. In plasma matrix, the precision (RSD) ranged from 1.5 to 9.9% (intra‐run) and from 2.4 to 7.2% (inter‐run); the accuracy (RE) ranged from 96.1 to 107% (intra‐run) and from 96.7 to 104% (inter‐run). Similarly, in urine the precision was 1.5–6.2% (intra‐run) and 1.9–6.1% (inter‐run); the accuracy was 83.1–99.3% (intra‐run) and 87.1–98.3% (inter‐run). Good recovery (>94%) and negligible matrix effect were achieved in both matrices. Long‐term matrix stability was established for at least 703 days in plasma and 477 days in urine. Bench‐top stability of 25 h and five freeze–thaw cycles were also confirmed in both matrices. The method was successfully implemented in GDC‐3280's first‐in‐human trial for assessing its pharmacokinetic profiles.  相似文献   

17.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Reliable methods for the determination of tryptophan and its metabolites are vital to the monitoring of biochemical states during the initiation and progression of cardiovascular disease. In the present study, a single‐run liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous determination of tryptophan (Trp) and its metabolites, including kynurenine (Kyn), kynurenic acid (KA), xanthurenic acid (XA) and 5‐hydroxytryptamine (5‐HT), in human plasma. The plasma samples were prepared using a protein precipitation approach, and the chromatographic separation was performed by gradient elution on a C18 column within a total analysis time of 3.5 min. The calibration ranges were 40–20,000 ng/mL for Trp, 4–2000 ng/mL for Kyn, 0.2–100 ng/mL for KA, 0.4–200 ng/mL for XA and 1–500 ng/mL for 5‐HT, and the precision and accuracy were acceptable. The evaluation of recovery and internal standard‐normalized matrix effect proved that the sample preparation approach was effective and the matrix effect could be negligible. The newly developed method was successfully applied to the analysis of plasma samples from healthy individuals and myocardial infarction patients. The findings suggested that the plasma concentrations of Trp, Kyn, 5‐HT as well as the concentration ratios of Kyn/Trp and Trp/5‐HT might serve as biomarkers for the monitoring of acute myocardial infarction.  相似文献   

19.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of methyllycaconitine (MLA) in rat plasma and brain tissue. Following acetonitrile protein precipitation, the analyte was separated using a gradient mobile phase on a reversed‐phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 683–216 for MLA and m/z 260–116 for the internal standard. The assay exhibited a linear dynamic range of 0.5–250 ng/mL for MLA in rat plasma and brain tissue. The lower limit of quantification was 0.5 ng/mL. Acceptable precision (<12%) and accuracy (100 ± 6%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify MLA concentrations in a rodent pharmacokinetic and brain penetration study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, sensitive and rugged solid‐phase extraction ultraperformance liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for determination of oseltamivir phosphate (OP) and oseltamivir carboxylate (OC) in human plasma. The procedure for sample preparation includes a simple SPE extraction procedure coupled with a Chromatopack C18 column (50 × 3.0 mm, i.d., 3.0 µm) with isocratic elution at a flow‐rate of 0.600 mL /min and acyclovir was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. Using 500 µL plasma, the methods were validated over the concentration ranges 0.92–745.98 and 5.22–497.49 ng/mL for OP and OC, with a lower limit of quantification of 0.92and 5.22 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.1%. The recovery was 68.72, 70.66 and 71.59% for OP, OC and IS, respectively. Total run time was only 1.0 min. The method was highly reproducible with excellent chromatography properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号