首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clear understanding of the metabolism of Traditional Chinese Medicines is extremely important in their rational clinical application and effective material foundation research. A novel and reliable strategy was performed to find more metabolites of paeoniflorin, determine the metabolites of total paeony glucosides (TPG) by means of determining those metabolites of paeoniflorin, and compare the metabolism differences between paeoniflorin and TPG by intragastric administration. This strategy was characterized as follows. Firstly, the rats were divided into two groups (the paeoniflorin group and the TPG group) to find differences in metabolism mechanisms between paeoniflorin and TPG. Secondly, UPLC‐FT‐ICR MS and UPLC‐Q‐TOF MS2 were applied to obtain accurate molecular weight and structural information, respectively. Thirdly, the metabolites were tentatively identified by a combination of data‐processing methods including mass defect screening, characteristic neutral loss screening and product ion screening. Finally, a comparative study was employed in the metabolism of paeoniflorin and TPG. Based on the strategy, 18 metabolites of paeoniflorin (including four new compounds) and 11 metabolites of TPG (including two new compounds) were identified. In all of the identified metabolites of paeoniflorin, two metabolites in rat plasma, four metabolites in rat urine and six metabolites in rat feces were found for the first time after paeoniflorin administration. The results indicate that hydrolyzation of the ester bond and glucosidic band and conjugation with glucuronide were the major metabolic pathways of paeoniflorin. The metabolites of paeoniflorin and TPG in rat plasma, urine and feces have been detected for the first time after intragastric administration. The results may contribute to a better understanding of the metabolism mechanism and provide a scientific rationale for researching the material basis of paeoniflorin and TPG in vivo.  相似文献   

2.
Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air‐dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) method. Bile, urine and feces were collected from rats after single‐dose (10 mg/kg) orally administered phillyrin. Liquid–liquid extraction and ultrasonic extraction were used to prepare samples. UPLC‐Q‐TOF‐MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Zengmian Yiliu (ZMYL), a traditional Chinese formula, is designed to improve clinical efficacy and reduce adverse effects in combination with cisplatin in ovarian cancer chemotherapy. In ZMYL, Radix Paeoniae Alba (RPA, made from root of Paeonia lactiflora Pall.) acts as an adjunctive drug in cancer treatment by ameliorating side effects induced by radio‐ and chemotherapy. The pharmacokinetics differences between isomer albiflorin and paeoniflorin, the main components of RPA, after oral administration decoction of single‐herb RPA and ZMYL were compared using a sensitive and accurate UPLC‐MS/MS. The results indicate that there are statistically significant differences between the pharmacokinetic parameters: decreasing area under the plasma concentration–time curve (AUC), maximum concentration (Cmax), elimination rate constant (Ke) and increasing apparent volume of distribution (Vd) and clearance (CL) for albiflorin, increasing distribution half‐life (T1/2d) and decreasing elimination half‐life (T1/2e), distribution rate constant (Kd) and absorption rate constant (Ka) for paeoniflorin in the ZMYL group compared with the single‐herb RPA group. In comparison with albiflorin, the pharmacokinetic parameters of paeoniflorin included significantly increasing mean residence time (MRT) and Vd, decreasing CL and Ke in the single‐herb RPA group and increasing MRT and T1/2d and decreasing CL, Ke and Kd in the ZMYL group. Both paeoniflorin and albiflorin are more likely, as the main active ingredients in RPA and ZMYL, to play a variety of pharmacological effects, and herb–herb interactions occur, resulting in different pharmacokinetics of albiflorin and paeoniflorin in RPA and ZMYL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a sensitive and efficient method was established and validated for qualitative and quantitative analysis of major bioactive constituents in Dazhu Hongjingtian capsule by liquid chromatography tandem mass spectrometry. A total of 32 compounds were tentatively identified using ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. Furthermore, 12 constituents, namely gallic acid, 3,4‐dihydroxybenzoic acid, salidroside, p‐ coumaric acid‐4‐O β ‐d ‐glucopyranoside, bergeninum, 4‐hydroxybenzoic acid, 4‐hydroxyphenylacetic acid, syringate, 6′′‐O ‐galloylsalidroside, rhodiosin, rhodionin and kaempferol‐7‐O α ‐l ‐rhamnoside, were simultaneously quantified by the developed ultra‐performance liquid chromatography coupled with a triple quadrupole mass spectrometry method in 9 min. All of them were analyzed on an Agilent ZorBax SB‐C18 column (3.0 × 100 mm, 1.8 μm) with linear gradient elution of methanol–0.1% formic acid water. The proposed method was applied to analyze three batches of samples with acceptable linearity (R , 0.9979–0.9997), precision (RSD, 1.3–4.7%), repeatability (RSD, 1.7–4.9%), stability (RSD, 2.2–4.9%) and recovery (RSD, 0.6–4.4%) of the 12 compounds. As a result, the analytical method possessing high throughput and sensitivity is suitable for the quality control of Dazhu Hongjingtian capsule.  相似文献   

5.
Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) technique combined with MetabolynxTM software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8–2 and 9–2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Qixianqingming granules (QXQM) comprise a traditional Chinese medicine (TCM) formula that was developed based on the combination of TCM theory and clinical practice. This formula has been proven to effectively treat asthma. In this study, an analytical procedure using ultraperformance liquid chromatography, coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry, was established for the rapid separation and sensitive identification of the chemical components in QXQM and its metabolites in serum of rats. Seventy‐two compounds were systematically identified in QXQM, including flavonoids, terpenoids, anthraquinones, phenylethanoid glycosides, stilbenes, alkaloids, and organic acids. Thirteen prototype compounds and 29 metabolites were detected in the serum of rats. The results provided fundamental information for further studying the mechanisms and clinical application of QXQM.  相似文献   

8.
A high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry method was established to detect as many constituents in rat biological fluids as possible after oral administration of Shuanghua Baihe tablets (SBT). An Agilent Poroshell 120 EC‐C18 column was adopted to separate the samples, and mass spectra were acquired in positive and negative modes. First, the fingerprints of SBT were established, resulting in 32 components being detected within 40 min. Among these compounds, 12 were tentatively identified by comparing the retention times and mass spectral data with those of reference standards and the reference literature; the other 20 components were tentatively assigned solely based on the MS data. Furthermore, metabolites in rat plasma and urine after oral administration of SBT were also analyzed. A total of 19 compounds were identified, including 13 prototypes and six metabolites through metabolic pathways of demethylation and glucuronide conjugation. Glucuronidated alkaloids were the main constituents in the plasma, and were then excreted from urine. This is the first systematic study on the metabolic profiling of SBT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Yupingfeng granules (YPFG) were isolated from a traditional Chinese medicine (TCM) formulation composed of three herbs (Astragali Radix, Atractylodis Macrocephalae Rhizoma, and Saposhnikoviae Radix). This formulation is used in TCM to tonify qi, and it can help strengthen exterior and reduce sweating. Nevertheless, the active components of YPFG remain unclear. In this study, the chemical constituents of YPFG were systematically characterized by ultra‐performance liquid chromatography coupled with electrospray ionization/ quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS). Fifty‐eight compounds, namely, 20 flavonoids, 19 saponins, nine organic acids, four volatile coumarins, three lactones, one alkaloid, and two other components, were identified. In addition, the constituents of YPFG with the potential for in vivo bioactivities following oral administration were investigated in Sprague–Dawley rats. Thirteen compounds, namely, 11 flavonoid‐related and 2 saponin‐related components, were detected in rat plasma. After enriching flavonoids and saponins in YPFG by extraction, the extracts and YPFG were administrated to immunosuppressed rats, respectively. Plasma samples were analyzed by UPLC‐ESI‐Q‐TOF‐MS, and principal component analysis (PCA) confirmed that the extracts had similar effects to YPFG. This method could discover active ingredients in YPFG quickly and provide a scientific basis for quality control and mechanism research.  相似文献   

10.
Echinacoside (ECH) and acteoside (ACT), as the most and major active components of Cistanche tubulosa, were reported to possess cardioactive, neuroprotective and hepatocyte protective effects, as well as antibacterial, antioxidative effects. Recently, more studies have focused on their pharmacological activities. However, their metabolic profiles in vivo have not been sufficiently investigated. This study proposes an approach for rapidly identifying the complicated and unpredictable metabolites of ECH and ACT in rat plasma, bile, urine and feces, and systematically and comprehensively revealing their major metabolic pathways, based on powerful ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. Plasma, bile, urine and feces were collected from rats after a single 200 mg/kg oral dose. A total of 49 metabolites were detected in rat biological samples. Through analyzing metabolites in bile samples, it was found that ECH and ACT were subjected to a marked hepatic first‐pass effect in liver. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass tandem mass spectrometry method was established to characterize the chemical constituents of Kangxianling granule (KXL), a traditional Chinese medicine formula, and the metabolic profile in rat urine and plasma after oral administration of KXL. A total of 27 compounds in KXL extract and 13 prototype compounds with 12 metabolites in rat urine and plasma were identified. Among the 27 detected compounds, 15 were identified by comparing the retention time and MS data with that of reference compounds and the other 12 compounds were tentatively assigned based on the MS data and reference literature. The main prototype components absorbed in rat were amygdalin, salvianolic acid B, tanshinones and anthraquinones. Hydroxylation, glucuronidation and sulfation were the principal metabolic pathways in rat. The results revealed that the 25 compounds identified in rat urine and plasma were the potential active ingredients of KXL, which provides helpful chemical information for further study of the pharmacology mechanism of KXL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

14.
Flos Abelmoschus manihot is a traditional herbal medicine widely used in clinical practice to tackle chronic kidney disease (CKD) for thousands of years. Nowadays, many studies indicate that gut bacteria are closely related to the progression of CKD and CKD‐related complications. In this study, a UPLC‐Q‐TOF/MS method coupled with the MetaboLynx™ software was established and successfully applied to investigate the metabolites and metabolic profile of Flos A. manihot extract by intestinal bacteria from normal and CKD rats. Eight parent components and eight metabolites were characterized by their protonated ions. Among these compounds, 15 were detected in the two group samples while M16 was only determined in the CKD model samples. Compared with the quercetin‐type glycosides, fewer myricetin‐type and gossypetin‐type metabolites were obtained in the two group samples. These metabolites suggested that deglycosylation and methylation are the major metabolic pathways of Flos A. manihot extract. Few differences of metabolite classes were observed in the two group samples. However, the concentrations of aglycones such as quercetin, myricetin and gossypetin in the normal samples were notably higher than those in the CKD model samples. The results are important in unravelling the pharmacological effects of A. manihot and clarifying its mechanism of action in vivo .  相似文献   

15.
Lycopus lucidus Turcz has been used as a traditional phytomedicine for menstrual disorder, amenorrhea, menstrual cramps, inflammation and cardiovascular diseases. However, there is not enough information about identification and quantification for the chemical constituents of L. lucidus Turcz. In this work, a simple, rapid and sensitive UHPLC‐Q‐TOF‐MS method was developed for characterization and identification of the phytochemical compositions in L. lucidus Turcz in negative ion mode. A total of 37 compounds, including 15 phenolic acids, 12 flavonoids, three triterpenoids and seven organic acids were tentatively characterized and identified by means of the retention time, accurate mass and characteristic fragment ions. Thirteen compounds were reported for the first time in L. lucidus Turcz. Among of them, 11 compounds were further quantified by multiple reactions monitoring. The results showed good performance with respect to linearity (r > 0.9959), repeatability (RSD < 2.6%), intra‐ and inter‐day precision (RSD < 3.2%), recovery (93.1–104.9%), and lower limit of quantification (5–50 ng/mL). Subsequently, the results were analyzed and classified by hierarchical cluster analysis. The research could be applied for identification and quality evaluation for L. lucidus Turcz.  相似文献   

16.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Neopanaxadiol (NPD), the main panaxadiol constituent of Panax ginseng C. A. Meyer (Araliaceae), has been regarded as the active component for the treatment of Alzheimer's disease. However, few references are available about pharmacokinetic evaluation for NPD. Accordingly, a rapid and sensitive method for quantitative analysis of NPD in beagle dog plasma based on ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry was developed and validated. Analytes were extracted from plasma by liquid–liquid extraction and chromatographic separation was achieved on an Agilent Zorbax Stable Bond C18 column. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions both at m/z 461.4 → 425.4 for NPD and internal standard of panaxadiol. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for multitude sample determination. After oral intake, NPD was slowly absorbed and eliminated from circulatory blood system and corresponding plasma exposure was low. Application of this quantitative method will yield the first pharmacokinetic profile after oral administration of NPD to beagle dog. The information obtained here will be useful to understand the pharmacological effects of NPD.  相似文献   

18.
The Yinchen–Zhizi herb pair (YZHP) consists of Herba Artemisiae Scopariae (Yinchen in Chinese) and Fructus Gardeniae (Zhizi in Chinese), and is mainly used to treat icteric hepatitis, itching skin and eczema. However, the bioactive constituents responsible for the pharmacological effects of YZHP are still unclear to date. In this work, a rapid and sensitive method was established to comprehensively study the constituents in YZHP extract by HPLC‐Q‐TOF MS/MS. The analysis was performed on an HPLC system equipped with an Agilent poroshell 120 EC‐C18 column (100 × 2.1 mm, 2.7 mm) working in a gradient elution program coupled to quadrupole‐time‐of‐flight mass spectrometry operating in the negative ion mode. As a result, a total of 46 compounds including 17 from Herba Artemisiae Scopariae and 36 from Fructus Gardeniae were detected and tentatively identified in YZHP extract by comparing the retention time and mass spectrometry and retrieving the reference literature. More importantly, a series of constituents, such as many iridoid glycosides, were reported for the first time in this formula. The HPLC‐Q‐TOF MS/MS method was developed and utilized successfully to identify the major constituents in YZHP extract and would be helpful for further metabolism and pharmacology research on YZHP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Epimedin C is one of the major bioactive constituents of Herba Epimedii. In this study, the metabolite profiles of epimedin C in rat plasma and bile were qualitatively investigated, and the possible metabolic pathways of epimedin C were subsequently proposed. After oral administration of epimedin C at a single dose of 80 mg/kg, rat biological samples were collected and pretreated by protein precipitation. Then these pretreated samples were injected into an Acquity UPLC BEH C18 column and detected by ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. In all, 12 metabolites were identified in the biosamples. Of these, eight, two from plasma and six from bile, are, to our knowledge, reported here for the first time. The results indicated that epimedin C was metabolized via desugarization, dehydrogenation, hydrogenation, dehydroxylation, hydroxylation, demethylation and glucuronidation pathways in vivo. Thus, this study revealed the possible metabolite profiles of epimedin C in rat plasma and bile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Iridoid glycosides (IGs), the major constituents in Fructus Gardeniae, have demonstrated various pharmacological activities, but there is no systematic chemical profile of IGs in Fructus Gardeniae in the published literature until now. Therefore, it is imperative that a rapid and sensitive high‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐Q/TOF‐MS/MS) method is established for comprehensive characterization of IGs in Fructus Gardeniae. Firstly, the fragmentation patterns of six known IGs were investigated and proposed and further concluded the diagnostic fragment ions and characteristic fragmentation pathways. Then, based on the summarized fragmentation patterns and the known compounds in the literatures, the other IGs in Fructus Gardeniae were identified successively. As a result, a total of 20 IGs were identified, of which three pairs of epimers were structurally characterized and differentiated. More importantly, one compound, the isoshanzhiside methyl ester, was tentatively identified as a new compound. The results of this study demonstrate the superiority of HPLC‐MS with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of the multiple groups of constituents in Fructus Gardeniae. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号