首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained.  相似文献   

2.
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space—time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained.  相似文献   

3.
Homogeneous balance method for solving nonlinear partial differential equation(s) is extended to solving initial-value problem and getting new solution(s) from a known solution of the equation(s) under consideration. The approximate equations for long water waves are chosen to illustrate the method, infinitely many simple-solitary-wave solutions and infinitely many rational function solutions, especially the closed form of the solution for initial-value problem, are obtained by using the extended homogeneous balance method given here.  相似文献   

4.
Russian Physics Journal - A method for solving physical problems is suggested in which the general solution of a differential equation in partial derivatives is written in the form of decomposition...  相似文献   

5.
求解非线性偏微分方程的自适应小波精细积分法   总被引:3,自引:0,他引:3  
以Burgers方程为例,提出了一种求解偏微分方程的自适应多层插值小波配置法,通过引入一种具有插值特性的拟Shannon小波并利用插值小波理论构造了多层自适应插值小波算子,从而在空间实现了偏微分方程的自适应离散.另外,精细时程积分方法和外推法的引入不但有助于提高求解速度和数值结果的精度,而且使时间积分步长的选取具有了自适应性.  相似文献   

6.
构造一类求解三种类型偏微分方程的间断Petrov-Galerkin方法.求解的方程分别含有二阶、三阶和四阶偏导数,包括Burgers型方程、KdV型方程和双调和型方程.首先将高阶微分方程转化成为与之等价的一阶微分方程组,再将求解双曲守恒律的间断Petrov-Galerkin方法用于求解微分方程组.该方法具有四阶精度且具有间断Petrov-Galerkin方法的优点.数值实验表明该方法可以达到最优收敛阶而且可以模拟复杂波形相互作用,如孤立子的传播及相互碰撞等.  相似文献   

7.
We investigate the use of renormalization group methods to solve partial differential equations (PDEs) numerically. Our approach focuses on coarse-graining the underlying continuum process as opposed to the conventional numerical analysis method of sampling it. We calculate exactly the coarse grained or “perfect” Laplacian operator and investigate the numerical effectiveness of the technique on a series of 1 + 1-dimensional PDEs with varying levels of smoothness in the dynamics: the diffusion equation, the time-dependent Ginzburg–Landau equation, the Swift–Hohenberg equation, and the damped Kuramoto–Sivashinsky equation. We find that the renormalization group is superior to conventional sampling-based discretizations in representing faithfully the dynamics with a large grid spacing, introducing no detectable lattice artifacts as long as there is a natural ultraviolet cutoff in the problem. We discuss limitations and open problems of this approach.  相似文献   

8.
In this paper, the (G'/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.  相似文献   

9.
10.
This paper introduces an effective method for seeking local conservation laws of general partial differential equations (PDEs). The well-known variational principle does not involve in this method. Alternatively, the conservation laws can be derived from symmetries, which include t/he symmetries of t/he associated linearized equation of t/he PDEs, and the adjoint symmetries of the adjoint eqUation of the PDEs.  相似文献   

11.
A Laplace decomposition algorithm is adopted to investigate numerical solutions of a class of nonlinear partial differential equations with nonlinear term of any order, utt + auxx + bu + cup + du^2p-1 = 0, which contains some important equations of mathematical physics. Three distinct initial conditions are constructed and generalized numerical solutions are thereby obtained, including numerical hyperbolic function solutions and doubly periodic ones. Illustrative figures and comparisons between the numerical and exact solutions with different values of p are used to test the efficiency of the proposed method, which shows good results are azhieved.  相似文献   

12.
陈恭  王一正  王烨  张纯禹 《计算物理》2018,35(5):515-524
针对可用参数化微分方程表示的问题,缩减基有限元方法利用典型参数的高精度解构造基函数,可大幅度降低待求问题的自由度.以固体热传导和中子扩散的快速求解为例,展示该方法的优良特性.结果表明:在线阶段的求解效率可以实现两到三个数量级的提升.基于高保真模拟的缩减基模型可使高性能计算有效地应用于工程优化设计、应急指挥及复杂问题的反分析等.  相似文献   

13.
In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method.The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.  相似文献   

14.
In this paper, an extended method is proposed for constructing new forms ofexact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel‘d-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen‘s method [Y. Chen, et al. Chaos, Solitons and Fractals 22 (2004) 675; Y. Chen, et al. Int. J. Mod. Phys. C 4 (2004) 595].  相似文献   

15.
In this paper, an extended method is proposed for constructing new forms of exact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method .  相似文献   

16.
We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ? x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with periodic boundary conditions, so KAM tori and thus quasi-periodic solutions are obtained for them.  相似文献   

17.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation. The fractional derivatives are described in the Caputo sense. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, the systems of nonlinear algebraic equation are derived. We further solve the system of nonlinear algebraic equation using Maple 13 and thus obtain the coefficients of the generalized Taylor expansion. Illustrative examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

18.
潘剑  郭照立  陈松泽 《计算物理》2022,39(2):223-232
提出一种名为NN-PDE(neural network-partial differential equations)的复合神经网络方法, 用于噪声数据预处理和学习偏微分方程。NN-PDE用一套神经网络负责数据预处理, 另一套网络耦合备选的方程信息, 进而学习潜在的控制方程。两套网络复合为一套网络, 可更加高效地处理噪声数据, 有效减小噪声的影响。使用NN-PDE学习多种物理方程(如Burgers方程、Korteweg-de Vries方程、Kuramoto-Sivashinsky方程和Navier-Stokes方程)的噪声数据, 均可获得准确的控制方程。  相似文献   

19.
In this paper, we give a KAM theorem for a class of infinite dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher dimensional spaces with periodic boundary conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff normal form. The applications to the higher dimensional beam equations and the higher dimensional Schrödinger equations with nonlocal smooth nonlinearity are also given in this paper.  相似文献   

20.
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation,
Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号