首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAX相陶瓷因具有独特的MX片层与A片层交替堆叠的晶体结构,使其兼具金属和陶瓷的优良特性,如良好的导热导电性、可加工性,同时具有良好的抗氧化性、耐腐蚀性以及耐摩擦磨损等性能,具有非常广泛的应用前景。本文首先介绍了MAX相陶瓷材料的种类与晶体结构,并简述了近几年新发现的MAX相陶瓷材料以及制备手段的发展动态。之后从MAX相物理性能的角度出发,重点综述了几种典型MAX相陶瓷材料的弹性性能、电学性能、热学性能、磁性能以及抗辐照性能的研究进展。此外,进一步介绍了MAX相的二维衍生物MXene的衍生过程、超导性以及其在电化学储能、催化领域的研究进展。最后,本文从探索MAX相材料新结构的多样性、MAX相物理性能及相关理论计算、MXene二维材料以及相应的制备、表征和应用等方面,展望了MAX相陶瓷材料的潜在研究方向及应用前景,为MAX相和MXene材料的深入研究提供了新的思路。  相似文献   

2.
All-optical switches have arisen great attention due to their ultrafast speed as compared with electric switches. However, the excellent optical properties and strong interaction of two-dimensional (2D) material MXene show great potentials in next-generation all-optical switching. As a solution, we propose all-optical switching used Au/MXene with switching full width at half maximum (FWHM) operating at 290 fs. Compared with pure MXene, the Au/MXene behaves outstanding performances due to local surface plasmon resonance (LSPR), including broadband differential transmission, strong near-infrared on/off ratio enhancement. Remarkably, this study enhances understanding of Au/MXene based ultrafast all-optical switching red-shifted about 34 nm in comparison to MXene, validating all optical properties of Au/MXene opening the way to the implementation of optical interconnection and optical switching.  相似文献   

3.
作为一种新型的二维材料,MXene凭借其各种优异的物理化学性质已受到极为广泛的关注,例如其具有极其出色的光热转换效率. 然而,人们对MXene的光热转换机制仍然知之甚少. 本文通过结合飞秒可见和中红外瞬态吸收光谱技术,对分散在各种溶剂中MXene(Ti3C2Tx)纳米片内的电子能量耗散动力学进行了系统的研究. 结果表明,MXene的激发态寿命在很大程度上取决于周围的溶剂环境. 在MXene被超快激光泵浦后,可以直接观察到MXene纳米片与相邻溶剂分子之间的界面电子振动耦合现象. 这些结果表明界面相互作用在MXene的超快能量传输动力学中起着关键的作用. 这一发现可为二维体系光转换性能的改进提供了一条潜在可行的途径.  相似文献   

4.
MXenes, as a legendary family of 2D van der Waals nanosheets materials, are extensively studied due to their unique characteristics of broadband nonlinear optical response. In particular, MXenes have excellent nonlinear optical properties of very large nonlinear absorption coefficients and very large nonlinear refractive indexes, which have attracted people's great attentions to study the application of MXenes in photonics, electronics, and optoelectronics in recent years. However, the high-repetition-rate (HRR) ultrafast pulses are not explored based on these kinds of materials. MXene Ti3C2Tx saturable absorber (SA) based on micro-fiber is fabricated by optical deposition method. Here, MXene Ti3C2Tx SA is used to achieve 36th harmonic mode-locking with a repetition rate of 218.4 MHz, a central wavelength of 1566.9 nm, the pulse width of 850 fs, and the spectral width of 3.51 nm. The maximum average output power and pulse energy are 6.95 mW and 0.032 nJ, respectively. This research based on MXene Ti3C2Tx light modulator opens a bright avenue for advanced nonlinear photonics.  相似文献   

5.
兼具长时程可塑性与短时程可塑性的电子突触被认为是类脑计算系统的重要基础.将一种新型二维材料MXene应用到忆阻器中,制备了基于Cu/MXene/SiO_2/W的仿神经突触忆阻器.结果表明, Cu/MXene/SiO_2/W忆阻器成功实现了稳定的双极性模拟阻态切换,同时成功模拟了生物突触短时程可塑性的双脉冲易化功能和长时程可塑性的长期增强/抑制行为,其中双脉冲易化的易化指数与脉冲间隔时间相关. Cu/MXene/SiO_2/W忆阻器的突触仿生特性,归功于MXene辅助的Cu离子电导丝形成与破灭的类突触响应机理.由于Cu/MXene/SiO_2/W忆阻器兼具长时程可塑性与短时程可塑性,其在突触仿生电子学和类脑智能领域将会具有巨大的应用前景.  相似文献   

6.
Yu Xu 《中国物理 B》2022,31(11):117702-117702
III-nitride semiconductor materials have excellent optoelectronic properties, mechanical properties, and chemical stability, which have important applications in the field of optoelectronics and microelectronics. Two-dimensional (2D) materials have been widely focused in recent years due to their peculiar properties. With the property of weak bonding between layers of 2D materials, the growth of III-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality, low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices. In this progress report, the main methods for the preparation of 2D materials, and the recent progress and applications of different techniques for the growth of III-nitrides based on 2D materials are reviewed.  相似文献   

7.
The fascinating roles of two‐dimensional (2D) nanomaterials in natural super‐strong bio‐composites (i.e. aragonite platelets in nacre and apatite platelets in bone) have aroused great interest in scientific communities to synthesize their artificial counterparts with controllable geometric and physical properties. The quantum 2D confinement of electrons recently revealed in graphene nanosheets further inspires to explore 2D metal nanocrystals with intrinsic anisotropic properties and quantum size effect. Among them, 2D Au nanocrystals stand out not only due to their unique structure‐ and environmental‐dependent properties, but also due to their rapid development in synthesis approaches and emerging applications in electronics, optics, sensing and biomedicines. In this Review the aim is to rationalize numerous newly published studies on 2D Au nanocrystals and to gain insight into their shape/size controlling synthesis, diverse morphologies, properties, and applications, potentially serving a handy guide to achieve on‐demand 2D Au nanocrystals.  相似文献   

8.
The field of silicon nanowires (SiNWs) and silicon-based 1D nanostructured heterostructures represent one of the most important research subjects within the nanomaterials family. A series of synthesis approaches of SiNWs and silicon-based 1D nanostructured heterostructures have been developed, and have garnered the greatest attention in the past decades for a variety of applications. This article provides an overview on recent research on the synthesis, properties and applications of SiNWs, silicon nanotubes (SiNTs) and complex silicon-based 1D nanostructures.  相似文献   

9.
The impact of interfaces and heterojuctions on the electronic and thermoelectric transport properties of materials is discussed herein. Recent progress in understanding electronic transport in heterostructures of 2D materials ranging from graphene to transition metal dichalcogenides, their homojunctions (grain boundaries), lateral heterojunctions (such as graphene/MoS2 lateral interfaces), and vertical van der Waals heterostructures is reviewed. Work on thermopower in 2D heterojunctions, as well as their applications in creating devices such as resonant tunneling diodes (RTDs), is also discussed. Last, the focus turns to work in 3D heterostructures. While transport in 3D heterostructures has been researched for several decades, here recent progress in theory and simulation of quantum effects on transport via the Wigner and non‐equilibrium Green's functions approaches is reviewed. These simulation techniques have been successfully applied toward understanding the impact of heterojunctions on transport properties and thermopower, which finds applications in energy harvesting, and electron resonant tunneling, with applications in RTDs. In conclusion, tremendous progress has been made in both simulation and experiments toward the goal of understanding transport in heterostructures and this progress will soon be parlayed into improved energy converters and quantum nanoelectronic devices.  相似文献   

10.
Two-dimensional(2D) materials have been a very important field in condensed matter physics, materials science, chemistry, and electronics. In a variety of 2D materials, transition metal chalcogenides are of particular interest due to their unique structures and rich properties. In this review, we introduce a series of 2D transition metal chalcogenides prepared by epitaxial growth. We show that not only 2D transition metal dichalcogenides can be grown, but also the transition metal chalcogenides that do not have bulk counterparts, and even patterned transition metal chalcogenides can be fabricated. We discuss the formation mechanisms of the novel structures, their interesting properties, and potential applications of these 2D transition metal chalcogenides. Finally, we give a summary and some perspectives on future studies.  相似文献   

11.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   

12.
Two-dimensional (2D) layered materials have been attracted tremendous research interest because of their novel photoelectric properties. If a single atomic layer instead of individual atoms is taken as a rigid motion object, two unique interlayer vibrations, i.e. compression/breathing and shear motions, at ultra-low frequencies can be expected and actually have been observed in many layered materials. The vibrations stem from the interlayer van der Waals interaction and can be well described by a conventional linear-chain model in most cases. The vibration frequencies strongly depend on layer thickness, which enables an accurate determination of layer numbers. A quick and nondestructive determination of flake thickness is particularly important for the materials, since the physical properties can be dramatically changed in the cases of several atomic layers. As a measure of interlayer coupling, the low-frequency modes are also sensitive to the stacking methods of atomic layers and the overlapping of different kinds of 2D materials. This allows the modes to play a key role in the applications like van der Waals heterojunctions. In this paper, we will give a brief review on the experimental observations and theoretical understanding of the interlayer modes in several typical 2D systems, as well as their actual and potential applications.  相似文献   

13.
Guoqi Zhao 《中国物理 B》2022,31(3):37104-037104
Two-dimensional (2D) layered perovskites have emerged as potential alternates to traditional three-dimensional (3D) analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion—Jacobson (DJ) perovskites. In this work, a serious of cycloalkane (CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional (DFT) calculations. We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9—2.1 eV. These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.  相似文献   

14.
以石墨烯为代表的二维材料因其独特的结构和优异性能而受到广泛关注.随着二维材料在无限小的方向不断发展,二维(材料)量子片逐渐引起人们极大的兴趣.二维量子片不仅保留了二维材料的本征特性,而且表现出量子限域和突出的边缘效应,为二维材料的潜在应用带来全新机遇.本文详细介绍了二维量子片的基本概念,制备现状与光学性能的研究进展,特...  相似文献   

15.
The development of novel structure, fabrication methods, formation mechanisms, and versatile applicability of boron nitride (BN) nanomaterials is still one of the research hotspots. In this report, we developed a novel two dimensional cubic boron nitride nanosheets (2D c-BNNSs) based on the first principles calculations. This structure is converted from hexagonal BN (h-BN) bilayers induced by hydroxyl (OH) radical and fluoride (F) atom codoping. The geometrical, electronic, and optical properties of the novel 2D OH radical and F atom codoped c-BNNSs (OH-F-c-BNNSs) have been systematically investigated. The results reveal that the unpaired electrons appear due to the electronegativity difference between OH radical and F atoms, resulting in the excellent electrical and magnetic properties of OH-F-c-BNNSs. In addition, OH-F-c-BNNSs also exhibit a strong response to the visible light with an absorption range covering the whole visible light region. More importantly, when the doping positions of OH radical and F atom are exchanged (F-OH-c-BNNSs), the F-OH-c-BNNS will have only electrical conductivity, which will make us to regulate the intrinsic properties of c-BNNSs for different applications only by adjusting the element doping positions. This work can provide a theoretical and experimental basis/support for designing and fabricating new types of 2D c-BN nanomaterials for different applications.  相似文献   

16.
Advances in processing technology, such as quantum‐well structures and dry‐etching techniques, have made it possible to create new types of two‐dimensional (2D) microcavity lasers which have 2D emission patterns of output laser light although conventional one‐dimensional (1D) edge‐emitting‐type lasers have 1D emission. Two‐dimensional microcavity lasers have given nice experimental stages for fundamental researches on wave chaos closely related to quantum chaos. New types of 2D microcavity lasers also can offer the important lasing characteristics of directionality and high‐power output light, and they may well find applications in optical communications, integrated optical circuits, and optical sensors. Fundamental physics of 2D microcavity lasers has been reviewed from the viewpoint of classical and quantum chaos, and recently developed theoretical approaches have been introduced. In addition, nonlinear dynamics due to the interaction among wave‐chaotic modes through the active lasing medium is explained. Applications of 2D microcavity lasers for directional emission with strong light confinement are introduced, as well as high‐precision rotation sensors designed by using wave‐chaotic properties.  相似文献   

17.
魏侠  闫法光  申超  吕全山  王开友 《中国物理 B》2017,26(3):38504-038504
Transition metal dichalcogenides(TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional(2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other2 D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping,elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.  相似文献   

18.
Two-dimensional(2D) materials have become a hot study topic in recent years due to their outstanding electronic,optical, and thermal properties. The unique band structures of strong in-plane chemical bonds and weak out-of-plane van der Waals(vdW) interactions make 2D materials promising for nanodevices and various other applications. Raman spectroscopy is a powerful and non-destructive characterization tool to study the properties of 2D materials. In this work, we review the research on the characterization of 2D materials with Raman spectroscopy. In addition, we discuss the application of the Raman spectroscopy technique to semiconductors, superconductivity, photoelectricity, and thermoelectricity.  相似文献   

19.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

20.
We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号