首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In [M. Brezina, P. Vaněk and P. S. Vassilevski, An improved convergence of smoothed aggregation algebraic multigrid, Numer. Linear Algebra Appl., 19 (2012), pp. 441–469], a uniform convergence bound for smoothed aggregation algebraic multigrid with aggressive coarsening and massive polynomial prolongator and multigrid smoothers is established provided that the number of smoothing steps is equal to the coarsening ratio parameter ν. The final convergence estimate needs the uniform bound for the constant Cν ∕ (2ν + 1). In this note, we give an improved upper bound. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We present a comparison of different multigrid approaches for the solution of systems arising from high‐order continuous finite element discretizations of elliptic partial differential equations on complex geometries. We consider the pointwise Jacobi, the Chebyshev‐accelerated Jacobi, and the symmetric successive over‐relaxation smoothers, as well as elementwise block Jacobi smoothing. Three approaches for the multigrid hierarchy are compared: (1) high‐order h‐multigrid, which uses high‐order interpolation and restriction between geometrically coarsened meshes; (2) p‐multigrid, in which the polynomial order is reduced while the mesh remains unchanged, and the interpolation and restriction incorporate the different‐order basis functions; and (3) a first‐order approximation multigrid preconditioner constructed using the nodes of the high‐order discretization. This latter approach is often combined with algebraic multigrid for the low‐order operator and is attractive for high‐order discretizations on unstructured meshes, where geometric coarsening is difficult. Based on a simple performance model, we compare the computational cost of the different approaches. Using scalar test problems in two and three dimensions with constant and varying coefficients, we compare the performance of the different multigrid approaches for polynomial orders up to 16. Overall, both h‐multigrid and p‐multigrid work well; the first‐order approximation is less efficient. For constant coefficients, all smoothers work well. For variable coefficients, Chebyshev and symmetric successive over‐relaxation smoothing outperform Jacobi smoothing. While all of the tested methods converge in a mesh‐independent number of iterations, none of them behaves completely independent of the polynomial order. When multigrid is used as a preconditioner in a Krylov method, the iteration number decreases significantly compared with using multigrid as a solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the multigrid methods using Hermitian/skew-Hermitian splitting (HSS) iteration as smoothers are investigated. These smoothers also include the modified additive and multiplicative smoothers which result from subspace decomposition. Without full elliptic regularity assumption, it is shown that the multigrid methods with these smoothers converge uniformly for second-order nonselfadjoint elliptic boundary value problems if the mesh size of the coarsest grid is sufficiently small (but independent of the number of the multigrid levels). Numerical results are reported to confirm the theoretical analysis.  相似文献   

4.
A typical approach to decrease computational costs and memory requirements of classical algebraic multigrid methods is to replace a conservative coarsening algorithm and short‐distance interpolation on a fixed number of fine levels by an aggressive coarsening with a long‐distance interpolation. Although the quality of the resulting algebraic multigrid grid preconditioner often deteriorates in terms of convergence rates and iteration counts of the preconditioned iterative solver, the overall performance can improve substantially. We investigate here, as an alternative, a possibility to replace the classical aggressive coarsening by aggregation, which is motivated by the fact that the convergence of aggregation methods can be independent of the problem size provided that the number of levels is fixed. The relative simplicity of aggregation can lead to improved solution and setup costs. The numerical experiments show the relevance of the proposed combination on both academic and benchmark problems in reservoir simulation from oil industry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We study smoothers for the multigrid method of the second kind arising from Fredholm integral equations. Our model problems use nonlocal governing operators that enforce local boundary conditions. For discretization, we utilize the Nyström method with the trapezoidal rule. We find the eigenvalues of matrices associated to periodic, antiperiodic, and Dirichlet problems in terms of the nonlocality parameter and mesh size. Knowing explicitly the spectrum of the matrices enables us to analyze the behavior of smoothers. Although spectral analyses exist for finding effective smoothers for 1D elliptic model problems, to the best of our knowledge, a guiding spectral analysis is not available for smoothers of a multigrid of the second kind. We fill this gap in the literature. The Picard iteration has been the default smoother for a multigrid of the second kind. Jacobi‐like methods have not been considered as viable options. We propose two strategies. The first one focuses on the most oscillatory mode and aims to damp it effectively. For this choice, we show that weighted‐Jacobi relaxation is equivalent to the Picard iteration. The second strategy focuses on the set of oscillatory modes and aims to damp them as quickly as possible, simultaneously. Although the Picard iteration is an effective smoother for model nonlocal problems under consideration, we show that it is possible to find better than ones using the second strategy. We also shed some light on internal mechanism of the Picard iteration and provide an example where the Picard iteration cannot be used as a smoother.  相似文献   

6.
We present an improved analysis of the smoothed aggregation algebraic multigrid method extending the original proof in [Numer. Math. 2001; 88 :559–579] and its modification in [Multilevel Block Factorization Preconditioners. Matrix‐based Analysis and Algorithms for Solving Finite Element Equations. Springer: New York, 2008]. The new result imposes fewer restrictions on the aggregates that makes it easier to verify in practice. Also, we extend a result in [Appl. Math. 2011] that allows us to use aggressive coarsening at all levels. This is due to the properties of the special polynomial smoother that we use and analyze. In particular, we obtain bounds in the multilevel convergence estimates that are independent of the coarsening ratio. Numerical illustration is also provided. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We compare terminology used in the literature on multigrid methods for compressible computational fluid dynamics to that used in linear multigrid theory. Several popular iterative and direct smoothers are presented side-by-side using the same terminology. We argue for greater analysis of these methods in order to place them into a more rigorous framework and to identify the most promising candidates for future development. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Philipp Birken 《PAMM》2011,11(1):743-744
We consider Runge-Kutta smoothers in a dual time stepping multigrid method for unsteady flow problems. These smoothers are easily parallelizable and Jacobian-free, making them very attractive for 3D calculations. Existing methods have been designed for steady flows, leading to slow convergence for unsteady problems. Here we determine the free parameters of the smoother to provide optimal damping for high frequency components for the unsteady linear advection equation. This is compared with an RK smoother designed for steady state problems, as commonly used in CFD codes. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Summary. This paper is concerned with the convergence analysis of robust multigrid methods for convection-diffusion problems. We consider a finite difference discretization of a 2D model convection-diffusion problem with constant coefficients and Dirichlet boundary conditions. For the approximate solution of this discrete problem a multigrid method based on semicoarsening, matrix-dependent prolongation and restriction and line smoothers is applied. For a multigrid W-cycle we prove an upper bound for the contraction number in the euclidean norm which is smaller than one and independent of the mesh size and the diffusion/convection ratio. For the contraction number of a multigrid V-cycle a bound is proved which is uniform for a class of convection-dominated problems. The analysis is based on linear algebra arguments only. Received April 26, 2000 / Published online June 20, 2001  相似文献   

10.
We design and analyze V‐cycle multigrid methods for an H(div) problem discretized by the lowest‐order Raviart–Thomas hexahedral element. The smoothers in the multigrid methods involve nonoverlapping domain decomposition preconditioners that are based on substructuring. We prove uniform convergence of the V‐cycle methods on bounded convex hexahedral domains (rectangular boxes). Numerical experiments that support the theory are also presented.  相似文献   

11.
We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level k, at least Ch k+1/h k , we prove a convergence result independent of h k+1/h k . The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis of our smoother is completely algebraic and independent of geometry of the problem and prolongators (the geometry of coarse spaces).  相似文献   

12.
By employing modulus‐based matrix splitting iteration methods as smoothers, we establish modulus‐based multigrid methods for solving large sparse linear complementarity problems. The local Fourier analysis is used to quantitatively predict the asymptotic convergence factor of this class of multigrid methods. Numerical results indicate that the modulus‐based multigrid methods of the W‐cycle can achieve optimality in terms of both convergence factor and computing time, and their asymptotic convergence factors can be predicted perfectly by the local Fourier analysis of the corresponding modulus‐based two‐grid methods.  相似文献   

13.
Summary. We analyze V–cycle multigrid algorithms for a class of perturbed problems whose perturbation in the bilinear form preserves the convergence properties of the multigrid algorithm of the original problem. As an application, we study the convergence of multigrid algorithms for a covolume method or a vertex–centered finite volume element method for variable coefficient elliptic problems on polygonal domains. As in standard finite element methods, the V–cycle algorithm with one pre-smoothing converges with a rate independent of the number of levels. Various types of smoothers including point or line Jacobi, and Gauss-Seidel relaxation are considered. Received August 19, 1999 / Revised version received July 10, 2000 / Published online June 7, 2001  相似文献   

14.
Variational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images.  相似文献   

15.
A modification of the multigrid method for the solution of linear algebraic equation systems with a strongly nonsymmetric matrix obtained after difference approximation of the convection-diffusion equation with dominant convection is proposed. Specially created triangular iterative methods have been used as the smoothers of the multigrid method. Some theoretical and numerical results are presented.  相似文献   

16.
Variational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images.  相似文献   

17.
The idea of using polynomial methods to improve simple smoother iterations within a multigrid method for a symmetric positive definite system is revisited. A two-level bound going back to Hackbusch is optimized by a very simple iteration, a close cousin of the Chebyshev semi-iterative method, but based on the Chebyshev polynomials of the fourth instead of first kind. A full V-cycle bound for general polynomial smoothers is derived using the V-cycle theory of McCormick. The fourth-kind Chebyshev iteration is quasi-optimal for the V-cycle bound. The optimal polynomials for the V-cycle bound can be found numerically, achieving about an 18% lower error contraction factor bound than the fourth-kind Chebyshev iteration, asymptotically as the number of smoothing steps k $$ k\to \infty $$ . Implementation of the optimized iteration is discussed, and the performance of the polynomial smoothers is illustrated with numerical examples.  相似文献   

18.
This paper presents an algebraic multigrid method for the efficient solution of the linear system arising from a finite element discretization of variational problems in H0(curl,Ω). The finite element spaces are generated by Nédélec's edge elements. A coarsening technique is presented, which allows the construction of suitable coarse finite element spaces, corresponding transfer operators and appropriate smoothers. The prolongation operator is designed such that coarse grid kernel functions of the curl‐operator are mapped to fine grid kernel functions. Furthermore, coarse grid kernel functions are ‘discrete’ gradients. The smoothers proposed by Hiptmair and Arnold, Falk and Winther are directly used in the algebraic framework. Numerical studies are presented for 3D problems to show the high efficiency of the proposed technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper will present a new method of adaptively constructing block iterative methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coefficient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号