首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-曲线估计确定正则参数的双网格迭代法   总被引:1,自引:0,他引:1  
本文考虑对不适定问题离散化得到的大规模不适定线性方程组进行Tiknonov正则化,然后用双网格迭代法求解得到的Tikhonov正则化方程组,并用L-曲线估计法来确定正则参数.试验问题的数值结果表明双网格迭代法求解正则化后的对称正定线性方程组效果很好,且L-曲线估计法确定正则参数计算量很小.  相似文献   

2.
Recently, a class of parameterized inexact Uzawa methods has been proposed for generalized saddle point problems by Bai and Wang [Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008) 2900–2932], and a generalization of the inexact parameterized Uzawa method has been studied for augmented linear systems by Chen and Jiang [F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput. (2008)]. This paper is concerned about a generalization of the parameterized inexact Uzawa method for solving the generalized saddle point problems with nonzero (2, 2) blocks. Some new iterative methods are presented and their convergence are studied in depth. By choosing different parameter matrices, we derive a series of existing and new iterative methods, including the preconditioned Uzawa method, the inexact Uzawa method, the SOR-like method, the GSOR method, the GIAOR method, the PIU method, the APIU method and so on. Numerical experiments are used to demonstrate the feasibility and effectiveness of the generalized parameterized inexact Uzawa methods.  相似文献   

3.
In this work, we consider numerical methods for solving a class of block three‐by‐three saddle‐point problems, which arise from finite element methods for solving time‐dependent Maxwell equations and some other applications. The direct extension of the Uzawa method for solving this block three‐by‐three saddle‐point problem requires the exact solution of a symmetric indefinite system of linear equations at each step. To avoid heavy computations at each step, we propose an inexact Uzawa method, which solves the symmetric indefinite linear system in some inexact way. Under suitable assumptions, we show that the inexact Uzawa method converges to the unique solution of the saddle‐point problem within the approximation level. Two special algorithms are customized for the inexact Uzawa method combining the splitting iteration method and a preconditioning technique, respectively. Numerical experiments are presented, which demonstrated the usefulness of the inexact Uzawa method and the two customized algorithms.  相似文献   

4.
Sparse covariance selection problems can be formulated as log-determinant (log-det) semidefinite programming (SDP) problems with large numbers of linear constraints. Standard primal–dual interior-point methods that are based on solving the Schur complement equation would encounter severe computational bottlenecks if they are applied to solve these SDPs. In this paper, we consider a customized inexact primal–dual path-following interior-point algorithm for solving large scale log-det SDP problems arising from sparse covariance selection problems. Our inexact algorithm solves the large and ill-conditioned linear system of equations in each iteration by a preconditioned iterative solver. By exploiting the structures in sparse covariance selection problems, we are able to design highly effective preconditioners to efficiently solve the large and ill-conditioned linear systems. Numerical experiments on both synthetic and real covariance selection problems show that our algorithm is highly efficient and outperforms other existing algorithms.  相似文献   

5.
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.  相似文献   

6.
For large sparse saddle point problems, Chen and Jiang recently studied a class of generalized inexact parameterized iterative methods (see [F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput. 206 (2008) 765-771]). In this paper, the methods are modified and some choices of preconditioning matrices are given. These preconditioning matrices have advantages in solving large sparse linear system. Numerical experiments of a model Stokes problem are presented.  相似文献   

7.
Inexact Newton methods for the nonlinear complementarity problem   总被引:2,自引:0,他引:2  
An exact Newton method for solving a nonlinear complementarity problem consists of solving a sequence of linear complementarity subproblems. For problems of large size, solving the subproblems exactly can be very expensive. In this paper we study inexact Newton methods for solving the nonlinear, complementarity problem. In such an inexact method, the subproblems are solved only up to a certain degree of accuracy. The necessary accuracies that are needed to preserve the nice features of the exact Newton method are established and analyzed. We also discuss some extensions as well as an application. This research was based on work supported by the National Science Foundation under grant ECS-8407240.  相似文献   

8.
Linear problems with inexact initial data are examined. The stopping rules for certain iterative methods designed for solving linear equations and a linear elimination problem are proposed and analysed. In particular, these methods are applicable to ill-conditioned and ill-posed problems. Numerical results are presented that demonstrate the efficiency of these methods.  相似文献   

9.
The two-grid method is a technique to solve the linear system of algebraic equations for reducing the computational cost. In this study, the two-grid procedure has been combined with the EFG method for solving nonlinear partial differential equations. The two-grid FEM has been introduced in various forms. The well-known two-grid FEM is a three-step method that has been proposed by Bajpai and Nataraj (Comput. Math. Appl. 2014;68:2277–2291) that the new proposed scheme is an ecient procedure for solving important nonlinear partial differential equations such as Navier–Stokes equation. By applying shape functions of IMLS approximation in the EFG method, a new technique that is called interpolating EFG (IEFG) can be obtained. In the current investigation, we combine the two-grid algorithm with the IEFG method for solving the nonlinear Rosenau-regularized long-wave (RRLW) equation. In other hand, we demonstrate that solutions of steps 1, 2, and 3 exist and are unique and also we achieve an error estimate for them. Moreover, three test problems in one- and two-dimensional cases are given which support accuracy and efficiency of the proposed scheme.  相似文献   

10.
To solve nonlinear complementarity problems, the inexact logarithmic-quadratic proximal (LQP) method solves a system of nonlinear equations (LQP system) approximately at each iteration. Therefore, the efficiencies of inexact-type LQP methods depend greatly on the involved inexact criteria used to solve the LQP systems. This paper relaxes inexact criteria of existing inexact-type LQP methods and thus makes it easier to solve the LQP system approximately. Based on the approximate solutions of the LQP systems, a descent method, and a prediction–correction method are presented. Convergence of the new methods are proved under mild assumptions. Numerical experiments for solving traffic equilibrium problems demonstrate that the new methods are more efficient than some existing methods and thus verify that the new inexact criterion is attractive in practice.  相似文献   

11.
In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.  相似文献   

12.
We present a shifted skew-symmetric iteration method for solving the nonsymmetric positive definite or positive semidefinite linear complementarity problems. This method is based on the symmetric and skew-symmetric splitting of the system matrix, which has been adopted to establish efficient splitting iteration methods for solving the nonsymmetric systems of linear equations. Global convergence of the method is proved, and the corresponding inexact splitting iteration scheme is established and analyzed in detail. Numerical results show that the new methods are feasible and effective for solving large sparse and nonsymmetric linear complementarity problems.  相似文献   

13.
A two-grid finite element approximation is studied in the fully discrete scheme obtained by discretizing in both space and time for a nonlinear hyperbolic equation. The main idea of two-grid methods is to use a coarse-grid space ($S_H$) to produce a rough approximation for the solution of nonlinear hyperbolic problems and then use it as the initial guess on the fine-grid space ($S_h$). Error estimates are presented in $H^1$-norm, which show that two-grid methods can achieve the optimal convergence order as long as the two different girds satisfy $h$ = $\mathcal{O}$($H^2$). With the proposed techniques, we can obtain the same accuracy as standard finite element methods, and also save lots of time in calculation. Theoretical analyses and numerical examples are presented to confirm the methods.  相似文献   

14.
An inexact restoration (IR) approach is presented to solve a matricial optimization problem arising in electronic structure calculations. The solution of the problem is the closed-shell density matrix and the constraints are represented by a Grassmann manifold. One of the mathematical and computational challenges in this area is to develop methods for solving the problem not using eigenvalue calculations and having the possibility of preserving sparsity of iterates and gradients. The inexact restoration approach enjoys local quadratic convergence and global convergence to stationary points and does not use spectral matrix decompositions, so that, in principle, large-scale implementations may preserve sparsity. Numerical experiments show that IR algorithms are competitive with current algorithms for solving closed-shell Hartree-Fock equations and similar mathematical problems, thus being a promising alternative for problems where eigenvalue calculations are a limiting factor.  相似文献   

15.
正定反Hermite分裂(PSS)方法是求解大型稀疏非Hermite正定线性代数方程组的一类无条件收敛的迭代算法.将其作为不精确Newton方法的内迭代求解器,我们构造了一类用于求解大型稀疏且具有非Hermite正定Jacobi矩阵的非线性方程组的不精确Newton-PSS方法,并对方法的局部收敛性和半局部收敛性进行了详细的分析.数值结果验证了该方法的可行性与有效性.  相似文献   

16.
Two-grid finite volume element methods, based on two linear conforming finite element spaces on one coarse grid and one fine grid, are presented and studied for two-dimensional semilinear parabolic problems. With the proposed techniques, solving the nonsymmetric and nonlinear system on the fine space is reduced to solving a symmetric and linear system on the fine space and solving the nonsymmetric and nonlinear system on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. It is proved that the coarse grid can be much coarser than the fine grid. As a result, solving such a large class of semilinear parabolic problems will not be much more difficult than solving one single linearized equation. In the end a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

17.
This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly.  相似文献   

18.
一类单调变分不等式的非精确交替方向法   总被引:1,自引:0,他引:1       下载免费PDF全文
交替方向法适合于求解大规模问题.该文对于一类变分不等式提出了一种新的交替方向法.在每步迭代计算中,新方法提出了易于计算的子问题,该子问题由强单调的线性变分不等式和良态的非线性方程系统构成.基于子问题的精确求解,该文证明了算法的收敛性.进一步,又提出了一类非精确交替方向法,每步迭代计算只需非精确求解子问题.在一定的非精确条件下,算法的收敛性得以证明.  相似文献   

19.
We propose a Ulm-like method for solving inverse eigenvalue problems, which avoids solving approximate Jacobian equations comparing with other known methods. A convergence analysis of this method is provided and the R-quadratic convergence property is proved under the assumption of the distinction of given eigenvalues. Numerical experiments as well as the comparison with the inexact Newton-like method are given in the last section.  相似文献   

20.
We consider a class of inexact Newton regularization methods for solving nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the order optimal convergence rate result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号