首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68–Ni10–Cr9–Mn7–Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.  相似文献   

2.
We report the direct experimental observations of the glassy behaviour in Ni–Co–Mn–Sn ferromagnetic shape memory alloys by doping sufficient substitutional point defect Co into the Ni sites (9 at%). The results showed that high level of Co doping had caused the complete suppression of the martensitic transformation and introduction of a strain glass transition in Ni–Co–Mn–Sn alloys. The strain glass transition was definitively characterized by the dynamic mechanical anomalies following the Vogel–Fulcher relationship and the signature nonergodicity of the frozen glass using a zero‐field‐cooled/field‐cooled heating measurement of static strain. The findings clarified the cause of vanishing of the martensitic transformation in Ni–Co–Mn–Sn alloy with high Co doping levels and the generality of glassy state in Ni–Mn based ferromagnetic shape memory alloys with high level of foreign elements doping. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
Highly corrosion-resistant nanocrystalline Mg-Zn-Y-Al multi-phase alloys have been prepared by consolidation of rapidly solidified (RS) ribbons. The relation between corrosion behavior and microstructure evolution of Mg-Zn-Y-Al alloys with a long period stacking ordered phase has been investigated. In order to clarify the influence of rapid solidification on the occurrence of localized corrosion such as filiform corrosion, several Mg96.75Zn0.75Y2Al0.5 (at.%) alloys with different cooling rates are fabricated by the gravity casting, copper mould injection casting and melt-spinning techniques and their corrosion behavior and microstructures are examined by the salt water immersion test, electrochemical measurements, GDOES, XRD, SEM and TEM. To clarify the effect of aluminium addition on the improvement in corrosion resistance of the alloys, several Mg97.25−xZn0.75Y2Alx alloys with different aluminium contents are fabricated by consolidating RS ribbons and the formation of corroded films on the Mg-Zn-Y-Al alloys have been investigated. Rapid solidification brings about the grain refinement and an increase in the solid solubility of zinc, yttrium and aluminium into the magnesium matrix, enhancing microstructural and electrochemical homogeneity, which in turn enhanced corrosion resistance. The addition of aluminium to magnesium can modify the structure and chemical composition of surface films and improves the resistance to local breakdown of the films.  相似文献   

4.
This paper presents measured multi-functional properties of Fe–Mn–Cr–Si–Tb–B ribbons developed by means of the melt-spinning technique in air. The alloys are multi-functional materials, which have both ferromagnetic and shape memory properties. If we can simultaneously improve the material properties, the applications of the shape memory alloys will be widened dramatically in the field of the electromagnetic sensors and actuators. The base shape memory material, Fe–Mn–Si alloy, is nonmagnetic due to its high manganese content (28–34 Mn, 4–6.5Si wt%). In order to improve ferromagnetic function of the Fe–Mn–Si alloy, we have investigated the addition of rare earth elements. Addition of about 0.7–1.0 wt% Tb was effective in increasing the saturation magnetization. However, ductility of the samples was not good and it was difficult to evaluate the shape memory properties with shape recovery strain measurements. The detailed magnetic and shape memory properties of the Fe–Mn–Cr–Si–Tb–B alloys are discussed in this paper.  相似文献   

5.
This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni-Mn-Co-Sn ribbons.The experimental results show that the reverse martensitic transformation temperature T M increases with the increasing pre-pressure,suggesting that pre-deformation is another effective way to adjust T M in ferromagnetic shape memory alloys.Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well.It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni-Mn-Co-Sn ribbons.  相似文献   

6.
The crystallization behaviour and evolution of nanoparticles in amorphous Al-Ni-Mischmetal (Mm) and Al-Ni-La alloys during heat treatment have been studied. Rapidly solidified ribbons were obtained by induction melting and ejecting the melt onto a rotating Cu wheel in an Ar atmosphere. The crystallization behaviour of the melt-spun ribbons was investigated using differential scanning calorimetry and X-ray diffractometry (XRD). XRD studies confirmed that all the ribbons were fully amorphous. Al-Ni-Mm systems showed a three-stage crystallization process whereas Al-Ni-La system, in general, showed a two-stage crystallization process on annealing. Crystallization kinetics was analysed by Kissinger and Johnson-Mehl-Avrami approaches. In Al-Ni-La alloys, the crystallization pathways depend on the La concentration. Microhardness of all the ribbons was examined at different temperatures and correlated with the corresponding evolution of phases.  相似文献   

7.
非晶合金条带的爆炸焊接   总被引:8,自引:2,他引:6       下载免费PDF全文
 报道了利用爆炸焊接技术对铁基、铁镍基非晶合金条带(厚度约25 μm)进行单层和多层爆炸焊接的结果。金相分析结果表明,条带间相互结合良好;X光衍射结果说明,焊接后的条带仍保持非晶态,即使采用表面已有部分晶化德条带进行焊接,焊接后仍转化为非晶态。这说明在焊接过程中条带表面已发生熔化,且冷却速度也可达106 K/s量级。  相似文献   

8.
The martensitic transformation was investigated in a set of twin roller melt-spun Cu–Zn–Al shape memory alloys, solidified at tangential wheel speeds between 20 and 40 m/s. The resulting microstructures were analyzed using X-ray diffraction, optical and transmission electron microscopy techniques. The characteristic martensitic transformation temperature, M S, was determined for each condition by conventional resistometric methods. The ribbons are homogeneous in shape and for each quenching rate they exhibit a quite uniform M S temperature. By proper thermal treatments, the different factors affecting M S could be separately examined and from temperature measurements, the contribution of L21 antiphase boundaries evaluated. A calculation of this contribution using pair interchange energies is in good agreement with the experimental results.  相似文献   

9.
Jayagopal Uchil 《Pramana》2002,58(5-6):1131-1139
Shape memory alloys are the generic class of alloys that show both thermal and mechanical memory. The basic physics involved in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases in shape memory alloys, viz., a high-temperature phase or austenitic phase (A) and a low-temperature phase or martensitic phase (M). In addition, an intermediate R phase exists in some special cases. The M↔A transformation is associated with a recoverable strain of about 6.5–8% and the R↔A transformation is associated with a recoverable strain of about 1%. The former transformation has been widely used in the applications like antenna deployment of satellite, aerospace couplings, orthodontic arch wires, medical guide wires for diagnostic and therapeutic catheters and other industrial applications. Our group has been giving emphasis to the characterization techniques for R phase, using differential scanning calorimetry (DSC), electrical resistivity probe (ER) and thermomechanical analyzer (TMA). R phase is found to have attractive features like stability against thermal cycling, a small thermal hysteresis and a negligible strain recovery fatigue. DSC has been used successfully to characterize the recoverable strain parameters, apart from the determination of transformation temperatures. ER is used, for the systematic study of the dependence of various phases on heat-treatment temperatures. TMA has been effectively employed for the study of the mixed phases. A space-rotating platform is designed and fabricated, using an actuator of shape memory spring, for obtaining controlled rotations. The efficiency and the reliability of this actuator has been tested, over a million thermal cycles.  相似文献   

10.
《Physics letters. A》2019,383(31):125878
Elements of alnico 8 are added into Nd-Fe-B alloys fabricated by rapid solidification method. It is observed that the magnetic properties at high temperature improved by small addition of alnico elements. The Curie temperature of the alloys increased from 580 K for standard alloy to 639 K by 20% addition of alnico 8 elements. The spin reorientation temperature decreased from 133 K to 104 K. The TEM analysis showed that elements of alnico 8 refine the microstructure of Nd-Fe-B ribbons. The STEM analysis confirmed the heterogeneous distribution of Nd, Fe, Cu, Al, Ni and homogeneous distribution of Ti, Nb and Co. The boundaries of nano grains contain more than 70% ferromagnetic elements, ensuring strong inter-grain coupling among the grains.  相似文献   

11.
This paper presents a magnetic measurement device for thin ribbon samples, which are produced by rapid cooling technique. This device enables us to measure magnetic properties easily by only inserting a ribbon sample into a sample holder. The sample holder was made by bakelite to fix any width sample. A long solenoid coil was used to generate a uniform magnetic field and the sample holder was placed at the mid part of the solenoid. The magnetic field strength was measured using a shunt resistor and the magnetic flux density and magnetization in sample ribbons were evaluated by using search coils. The accuracy of measurement was verified with an amorphous metal ribbon sample. Next, we have measured magnetic properties of some magnetic shape memory alloys, which have different compositions. The measured results are compared and we clarified the effect of Sm contents on the magnetic properties.  相似文献   

12.
The magnetoresistance (MR){=[R(H)−R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8TC, regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ>ρ||) is also observed in single crystal samples, which may be related to unique features of Heusler alloys.  相似文献   

13.
The amorphous, nanocrystalline and polycrystalline ferromagnetic alloys are known as materials with excellent soft magnetic properties. These attractive magnetic properties are challenge for researchers to extend investigation of these materials with the aim to broaden their technical exploitation. The shape in which amorphous, nanocrystalline and polycrystalline materials are usually prepared, is in many cases not suitable shape for application, therefore it is logical to attempt to prepare such material in a more “bulk” form, for example in the form of a cylinder or a ring, that would be more convenient for industrial applications. One of the ways to prepare material in bulk form is to compact the powder. There is rational assumption that the non-magnetostrictive alloys (amorphous Co-Fe-Si-B, nanocrystalline Fe-Nb-Cu-Si-B, and polycrystalline Ni-Fe) may be suitable for the preparation of bulk samples by high-pressure compression, because mechanical stress does not induce magnetic anisotropy in ferromagnetic material during preparation process.We observed that milling of ribbons prepared by rapid quenching method leads to the increase of coercivity, which is caused by the increase of the fraction of magnetization vector rotation in the magnetization processes (the fraction of domain wall motion decreases). After long milling the powder particles become single-domain and can be magnetized by the magnetization vector rotation only, exhibiting maximum value of coercivity.Consolidation of powder with high value of coercivity leads to the “magnetic contact” between powder particles resulting in the decrease of coercivity to the value comparable with that for as-spun ribbons.  相似文献   

14.

Aluminium-based composites with quasicrystalline particles as reinforcements were synthesized via the powder metallurgy processing route. In order to obtain bulk samples with a nanoscale microstructure most equivalent to that resulting from rapid solidification, powders of Al-Mn-Ce alloys were prepared by pulverization of melt-spun ribbons using a planetary ball mill. Significant differences in the phase formation upon quenching, composite microstructure and thermal stability of the microstructure were found for different alloy compositions. Severe grain growth during the subsequent consolidation by hot extrusion caused the formation of a micrometre-scale composite instead of the nanoscale phase mixture initially existing after rapid solidification. After hot extrusion, the specimens were deformed by compression at a constant compression rate at room temperature. With an ultimate strength of up to 975 MPa and a ductility of more than 4% the material yields excellent properties compared with conventionally produced aluminium-based alloys.  相似文献   

15.
In ferromagnetic amorphous and nanocrystalline soft magnetic alloys the induced magnetic anisotropy plays a fundamental role in the hysteresis behavior but, due to the elongated shape, it can be measured only if KU is perpendicular to the sample long axis. In order to measure the longitudinal induced anisotropy, an original method derived from known thin layers measurement techniques was used. Hysteresis loops shifted by perpendicular bias field were recorded for this purpose. Direct measurement of the longitudinal induced anisotropy in amorphous and nanocrystalline ribbons or wire without needing sample preparation is reported for the first time. Evidence of self-induced anisotropy is brought in a Fe–Co-based nanocrystalline alloy.  相似文献   

16.
The investigation addresses the effect of Mn incorporation for Ni on the properties of a series of Ni77−xMnxGa23 (x=22-29; at%) ferromagnetic shape memory alloys prepared in the form of ribbons by a melt spinning technique. Phase transformation studies in these ribbons by differential scanning calorimetry revealed that austenitic start and martensitic start temperatures decreased with the increase in Mn content. The Curie temperature (TC) of these alloys determined from thermal variation of magnetisations was found to rise with increasing Mn content. The martensitic transformation temperatures were above TC in low Mn containing (x=22 and 23) alloys. Morphology observed through transmission electron microscopy manifested complex martensitic features in the alloy with x=22 while x=29 had an austenitic phase. The alloys with intermediate Mn content (x=24, 25) had overlapping magnetic and martensitic transformations close to room temperature. The thermal lag between austenitic and martensitic characteristic temperatures in these alloys has been corroborated to their structural state. X-ray diffraction indicated a predominant martensite phase and austenite phase in low and high Mn containing alloys respectively. In-situ diffraction studies during thermal cycle indicate martensite-austenite transformations.  相似文献   

17.
The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.  相似文献   

18.
The melt-spun Co- and Fe-based amorphous alloys have been investigated extensively for applications in magnetic devices, which require magnetically soft materials. Although these alloys exhibit excellent soft magnetic properties, their thin sheet shape, which is a consequence of the low glass forming ability, limits significantly their engineering applications. A powder metallurgy is thus an alternative way of producing bulk and, at the same time, soft magnetic materials, having desired shape. In our case, Co56Fe16Zr8B20 and Co70.3Fe4.7Si10B15 amorphous ribbons have been ball-milled for a short time and subsequently compacted (by hot pressing) into disc-shaped specimens with the aim to achieve samll values of resulting coercivity. This work is focused only on the first preparation step i.e. on structural and magnetic properties of ball-milled powders obtained by ball-milling of Co-based melt-spun ribbons at different conditions. Two different ways of milling were employed in order to obtain a powder form of the material: the ribbons were either continuously ball-milled for up to 12 hours or, after each half an hour of ball-milling, the vials were cooled in liquid nitrogen bath for half an hour. Mössbauer spectroscopy, X-ray diffraction and differential scanning calorimetry were employed to compare and to present the differences between these two different ways of milling.  相似文献   

19.
邓永和  文大东  彭超  韦彦丁  赵瑞  彭平 《物理学报》2016,65(6):66401-066401
采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速γ与压力P下的快速凝固过程, 并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析. 结果表明: 快凝玻璃合金的局域原子组态主要是(12 12/1551)规则二十面体、以及 (12 8/1551 2/1541 2/1431)与(12 2/1441 8/1551 2/1661) 缺陷二十面体. 通过原子轨迹的逆向跟踪分析发现: 从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响, 不仅其可遗传分数Fi =N300 K←Tgi/NTg 与GFA密切相关, 而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg = Tg/Tm也存在很好的对应关系.  相似文献   

20.
为了进一步改善材料的性能和探索新的材料,将Mn2NiGa合金中的Ni元素分别用Fe和Co替代,制备了Mn50Ni25-xFe(Co)xGa25系列合金. 研究了Fe和Co元素对Mn2NiGa合金的结构、马氏体相变行为、磁性和机械性能等方面的影响. 关键词: 铁磁形状记忆合金 Heusler合金 50Ni25-xFe(Co)xGa25')" href="#">Mn50Ni25-xFe(Co)xGa25  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号