首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 238 毫秒
1.
体相掺钇、铝的α-Ni(OH)2的固相合成和高温电化性能   总被引:2,自引:0,他引:2  
固相法合成含不同Y3 的铝基α-Ni(OH)2,样品的组成、晶相结构、表面形态等用XRD,SEM,FT-IR,AAS和CT等表征.用此材料组装成氢镍模拟电池.在不同温度下做了恒流充放电研究.结果表明,在30℃时Y3 使铝基α-Ni(OH)2电极材料的放电比容量稍有下降.而60℃时,在各实验倍率充放电情况下以掺Y(OH)3摩尔含量1.2%为合适比例,它比不掺钇的铝基α-Ni(OH)2放电比容量要高出17%~29%.高温放电电位也有所改善.对电极材料的高温性能改善的机制也做了探讨.  相似文献   

2.
为了同时改善固相共沉积法合成的α-Ni0.8Co0.05Al0.15(OH)2.15-2y(CO3)y·xH2O的常、高温充放电性能,样品经混合掺杂不同比率的La2O3,Sm2O3,Y2O3,Lu2O3以及La2O3+Y2O3后,作为模拟MH/Ni电池的正极材料,在不同温度下由恒流充放电和循环伏安测定其电化学性能.结果表明:复合掺加0.5%La2O3+1.0%Y2O3(质量分数),在0.5C和5C充放电下,30℃时可分别提高样品的放电比容量3.3%和4.7%,60℃时可分别提高17.4%和19.9%.同时也改善了高温放电电位.  相似文献   

3.
为了改善镍电极的高温充电效率,采用机械混合的方式将球形Ni(OH)2与不同比例的Lu2O3混合后制成粘结式镍正极。充放电测试、循环伏安和XRD等实验结果表明,掺杂Lu2O3后镍电极的析氧过电位明显提高,高温充电效率得到了很大改善,在充电后的电极中β-NiOOH生成;而且Lu2O3的掺杂比例对镍电极的高温性能在不同的充放电倍率下有不同程度的影响,3.5%是最好的掺杂比例,掺杂对高温小电流充电效率的改善作用要大于高温大电流充电。  相似文献   

4.
球型Ni(OH)2表面包覆Y(OH)3及其高温充放电性能   总被引:4,自引:0,他引:4  
应用共沉淀的方法在球型Ni(OH)2的表面包覆了一层Y(OH)3,并研究了包覆不同含钇量后的球型Ni(OH)2的高温充放电性能。研究结果表明:包覆Y(OH)3的球型Ni(OH)2具有良好的高温充放电性能。其中1C充放电条件下,包覆量为0.3%的Ni(OH)2较好,0.2C充放电条件下,包覆量为1%的Ni(OH)2较好。  相似文献   

5.
固相法合成的样品,经X-射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、电感螯合等离子体发射光谱(ICP-AES)、比表面积(BET)、热重分析(TGA)和滴定法(CT)等表征为α-Ni0.81Al0.19(OH)2.19-2y(CO3)y·χH2O(χ=1.1~1.2,y=0.10-0.12).为了改善其高温性能,样品经混掺不同量Y2O3后作为氢镍电池的正极材料,做了不同温度恒流充放电、微电极循环伏安(CV)和交流阻抗谱(EIS)测定.结果表明,60℃时掺Y2O3O4wt%~1.2wt%,能提高样品不同倍率放电比容量达18.1%~42.0%,同时也改善了高温放电电位.  相似文献   

6.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正极材料.循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V,电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266Ω减小到102Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到2.54×10-11 cm2· s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定,其第二周的放电比容量为176.2 mAh·g-1,室温下循环100周后容量几乎没衰减;高温(55°C)下充放电循环100周,其放电比容量平均每周仅衰减0.20%,远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1,高于其他两种正极材料.电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗,增大了锂离子扩散系数  相似文献   

7.
金属并联电解制备LiCo_xNi_(1-x)O_2正极材料   总被引:1,自引:0,他引:1  
应用钴、镍金属并联电解法制备锂离子电池正极材料.电解反应时,调节流过钴、镍电极上的电流比值及控制合适的电流密度,可生成均匀的CoxNi1-x(OH)2前驱体.研究表明,该法简单且无污染.合成的LiCo0.3Ni0.7O2正极材料充放电的容量较高,循环稳定性也较好,其初始放电容量为163mAh/g,经过50次充放电循环后放电容量仍可保持140mAh/g.  相似文献   

8.
采用配位沉淀法制备出了Ni(OH)2样品,经XRD测试为β-Ni(OH)2,TEM测试结果表明其为平均粒径50nm左右的不规则的颗粒。将所制备的纳米Ni(OH)2按8wt%的比例在球镍中混合后制成电极,可使正极的比容量提高11%左右。热分析表明,纳米Ni(OH)2的电化学活性高于球镍的电化学活性。激光拉曼光谱的测试结果说明了8wt%混合后制成的纳米电极确实有较好的放电容量,同时也证实了用拉曼光谱可以表征电极材料的充放电  相似文献   

9.
采用缓冲溶液法制备Mn掺杂Ni_(1-x)Mn_x(OH)_2(x=0.1,0.2,0.3,0.4)。X射线衍射(XRD)测试表明x=0.1和0.2的样品主要是由β相组成;扫描电子显微镜(SEM)和氮气吸附-脱附测试表明掺杂Mn样品比不掺Mn的商用β-Ni(OH)2的颗粒更细小、多孔;恒流充放电测试表明,这种电极具有优良的高倍率性能,当x=0.2,电流密度800 mA·g-1时放电比容量为288.8 mAh·g-1,同等条件测试的商用β-Ni(OH)2放电比容量为198.7 mAh·g-1,循环580圈后仍有276 mAh·g-1的放电比容量,其衰减率为4.1%,而同等测试条件下的其它4种样品衰减率分别为46.1%(商用β-Ni(OH)2)、13.0%(x=0.1)、25.6%(x=0.3)、34.1%(x=0.4),可见这种Mn掺杂电极材料适合大电流密度充放电,能够改善镍电极的循环稳定性,降低镍电极成本。  相似文献   

10.
采用浓度梯度加料的方式,首先沉淀制备了核为Ni(OH)2、壳为镍钴锰氢氧化物浓度梯度包覆的复合前驱体,然后配锂高温焙烧,合成了梯度包覆的镍酸锂复合正极材料Li[Ni0.92Co0.04Mn0.04]O2。采用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行了表征。结果表明,该材料具有良好的六方单相层状α-NaFeO2结构,呈类球型状。切面元素线扫描显示该材料的包覆壳层中主要金属元素呈梯度变化。同时该新型梯度包覆的镍酸锂复合正极材料表现出了优越的电化学性能:在25℃下,2.8~4.3 V充放电范围,0.1C首次放电比容量可达198.3 mAh.g-1,循环40次容量保持96.8%;1C和2C倍率下放电比容量可达175 mAh.g-1和165.1 mAh.g-1。55℃下,该材料首次放电比容量可达236.1 mAh.g-1,循环40次容量仍能保持77.5%。  相似文献   

11.
平板显示是显示技术发展的方向,发光材料的薄膜化是显示技术发展的重要研究对象.本研究采用电沉积-烧结方法制备出了氧化钇铕红色荧光薄膜.在0.1 mol/L硝酸钇溶液中加入4%(摩尔分数)0.1 mol/L硝酸铕掺杂,用三电极体系进行阴极电沉积,工作电极的电位为-1.2 V(相对于Ag/AgCl电极),温度65℃,沉积时间为400 s,500℃灼烧2 h,制备出的发光薄膜与高温固相法制备的薄膜对比,其发射光谱的峰位相同.XRD检测显示经不同温度灼烧后,随温度的升高,氧化钇晶相逐渐完整.经SEM扫描,薄膜沉积均匀平整.  相似文献   

12.
新型非对称电化学电容器的电极匹配研究   总被引:5,自引:1,他引:4  
苏岳锋  吴锋 《电化学》2004,10(2):190-196
活性炭负极容量的有效利用率是导致双电层电化学电容器和C/Ni(OH)2非对称电化学电容器容量性质差异的主要因素,并可将其作为非对称电化学电容器容量设计和测算的依据;本文引入Ni(OH)2正极有效活性物质概念,以正极有效活性物质的量匹配负极的设计容量,从而优化正、负极的容量匹配,改善非对称电化学电容器的容量和大电流性能.  相似文献   

13.
通过对Mm(NiMnCoAl)5电极的化学活化处理提高了金属氢化物电极的容量、电催化活性、活化性能和快速放电能力;讨论了化学活化处理对金属氢化物电极电化学性能的影响;在活化剂KBH4作用下,金属氢化物表面的氧化物技还原,在活化过程中一部分氢原子贮入合金之中,增加了电极的比表面,文中试验了这种活化方法对Ni/MH电池封口化成的作用,测试结果表明封口化成的AA型Ni-MH电池性能与开口化成电池的性能相当,其容量达到1050~1150mAh,1C、3C、SC信率下放电容量分别达到0.2C下的96.7%、89.0%、83.8%  相似文献   

14.
稀土氧化物对二次锌电极性能的影响   总被引:3,自引:0,他引:3  
应用阴极极化法在锌电极上覆盖一层稀土氢氧化物膜La(OH)3或Ce(OH)3,并用循环伏安、动电位极化、定电位阴极极化实验研究其电化学性能.结果表明,La(OH)3或Ce(OH)3膜能抑制锌酸根离子的迁移,提高析氢过电位,降低腐蚀电流密度并能抑制枝晶生长.SEM观测显示,稀土氧化物La2O3或CeO2改变了锌沉积形态,进而提高了锌酸钙电极的充放电循环性能.  相似文献   

15.
用 XRD和 Raman光谱等方法对几种典型球形 Ni( OH) 2 电极材料进行了表征 ,并分析了材料的表观形貌、掺杂元素和微观结构等对其充放电性能的影响 .结果表明 ,有较好填充性和充放电性能 Ni( OH) 2 电极材料所具有的特征为 ,颗粒的球形好且结晶完好 ,晶粒较小 ,较大的晶格参数 c,并在 51 0和 3596cm- 1 处可以生成 Raman光谱峰 ;而 XRD和 Raman光谱方法则是评价 Ni( OH) 2 电极材料性能的有效手段 .  相似文献   

16.
本文采用球形Al/Co部分取代α型Ni(OH)2为前驱体成功制备了锂离子电池正极材料LiNi0.8Co0.15Al0.05O2。首先采用氢氧化钠与碳酸钠为沉淀剂合成出Al/Co部分取代α型Ni(OH)2,然后将之与LiOH·H2O混合,最后在氧气气氛中不同温度下热处理8h,即可得到球形LiNi0.8Co0.15Al0.05O2材料。X射线衍射结果表明,LiNi0.8Co0.15Al0.05O2材料为α-NaFeO2相。扫描电镜结果表明,材料颗粒形貌为球形。热重分析结果表明合成LiNi0.8Co0.15Al0.05O2的主反应温度在700~750℃之间。振实密度测试结果表明,750℃下制备的LiNi0.8Co0.15Al0.05O2材料可达2.2g·cm-3。恒流充放电结果表明,该材料在0.5mA·cm-2电流密度下,在3.0~4.3V间的首次充电容量可达210.3mAh·g-1,首次放电容量为179.7mAh·g-1,充放电效率为85.4%。与采用以β-Ni0.85Co0.15(OH)2为前驱体合成的LiNi0.85Co0.15O2和Al掺杂的LiNi0.8Co0.15Al0.05O2相比,尽管其首次放电容量与放电效率都有所降低,但循环性能有所提高,50周期后容量仍为初始容量的89.5%。研究表明,以球形Al/Co部分取代α型Ni(OH)2作为前驱体为球形氧化镍钴铝锂材料的制备提供了一条新的途径。  相似文献   

17.
于Ni(OH)2中添加具有电容特性和大电流充放电性能良好的NiO.研究发现掺杂5%NiO的Ni(OH)2在0.2C倍率下放电容量可达310.1mAh/g,而3C放电容量还可以保持79.5%.其循环伏安扫描氧化还原峰电位差仅为164mV,表明该材料的循环可逆性好.由此可见在Ni(OH)2掺杂适量的NiO,对于Ni(OH)2的大电流充放电性能确有改进作用.  相似文献   

18.
Co(III)离子在二氧化铅电极上的阳极形成   总被引:2,自引:1,他引:2  
文献上曾报导过Co(Ⅱ)离子具有加速PbO_2电极上氧阳极析出过程的作用,并表明当Co(Ⅱ)离子存在时,氧的析出过程有可能通过表面吸附的高价钴氧化物氧化水分子而形成.本文通过浓硫酸溶液中Co(Ⅱ)阳极氧化为Co(Ⅲ)以及O_2阳极析出动力学的研究,表明了O_2的析出和Co(Ⅲ)的形成是通过吸附在电极表面的高价钴(Ⅳ)的OH 基配合物分别氧化水分子和Co(Ⅱ)离子形成的,它与Cr(Ⅲ)、Mn(Ⅱ)离子的阳极氧化过程相类似,而不是通过Co(Ⅱ)离子直接放电形成的.本文利用文献所述的研究方法.在固定硫酸浓度(3.4mol·kg~(-1))下,研究CoSO_4浓度(0.05—0.35mol·drn~(-3))对于O_2和Co(Ⅲ)阳极形成过程分别的影响.在固定CoSO_4(0.2mol·  相似文献   

19.
采用静电纺丝技术制备了PVA/[Y(NO3)3+Yb(NO3)3+Er(NO3)3]复合纳米纤维,将其在适当的温度下进行热处理,得到Y2O3∶Yb3+,Er3+上转换纳米纤维.XRD分析表明,复合纳米纤维为无定形,Y2O3∶Yb3+,Er3+上转换纳米纤维属于体心立方晶系,空间群为Ia3.SEM分析表明,复合纳米纤维的平均直径约为150nm;随着焙烧温度的升高,纤维直径逐渐减小.经过600℃焙烧后,获得了直径约60nm的Y2O3∶Yb3+,Er3+上转换纳米纤维.TG-DTA分析表明,当焙烧温度高于600℃时,复合纳米纤维中水分、有机物和硝酸盐分解挥发完毕,样品不再失重,总失重率为83%.FTIR分析表明,复合纳米纤维与纯PVA的红外光谱一致,当焙烧温度高于600℃时,生成了Y2O3∶Yb3+,Er3+上转换纳米纤维.该纤维在980nm的半导体激光器激发下发射出中心波长为521,562nm的绿色和656nm的红色上转换荧光,分别对应于Er3+离子的2H11/2/4S3/2→4Il5/2跃迁和4F9/2→4Il5/2跃迁.对Y2O3∶Yb3+,Er3+上转换纳米纤维的形成机理进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号