首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bulk studies are not suitable to describe and study cell-to-cell variation, which is of high importance in biological processes such as embryogenesis, tissue differentiation, and disease. Previously, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to measure the properties of organelles isolated from millions of cells. As such, these bulk measurements reported average properties for the organelles of cell populations. Similar measurements for organelles released from single cells would be highly relevant to describe the subcellular variations among cells. Toward this goal, here we introduce an approach to analyze the mitochondria released from single mammalian cells. Osteosarcoma 143B cells are labeled with either the fluorescent mitochondrion-specific 10-N-nonyl acridine orange (NAO) or via expression of the fluorescent protein DsRed2. Subsequently, a single cell is introduced into the CE-LIF capillary where the organelles are released by a combined treatment of digitonin and trypsin. After this treatment, an electric field is applied and the released organelles electromigrate toward the LIF detector. From an electropherogram, the number of detected events per cell, their individual electrophoretic mobilities, and their individual fluorescence intensities are calculated. The results obtained from DsRed2 labeling, which is retained in intact mitochondria, and NAO labeling, which labels all mitochondria, are the basis for discussion of the strengths and limitations of this single-cell approach. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users  相似文献   

2.
Rat pituitary homogenates were subjected to two phase countercurrent partition in a poly(ethylene glycol)-dextran mixture using a simple apparatus with enhanced gravity to facilitate the phase separations. Assay of the fractions for organelle marker enzymes and prolactin after 17 transfers showed similar distributions for endoplasmic reticulum, lysosomes, prolactin granules and plasma membrane at the lowest dextran concentrations. Increasing the dextran concentrations had a differential effect on the various organelles. Excellent resolution of endoplasmic reticulum from the other organelles was obtained and marked organelle heterogeneity was demonstrated. Two-phase countercurrent partition thus offers an alternative approach to the subcellular fractionation of pituitary homogenates and should prove useful in separating endoplasmic reticulum from plasma membrane and other cell components.  相似文献   

3.
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.  相似文献   

4.
BACKGROUND: Ratio imaging has received intensive attention in the past few decades. The growing potential of ratio imaging is significantly limited, however, by the lack of appropriate fluorescent probes, for acidic organelles in particular. The classic fluorescent dyes (such as fluoresceins, rhodamines and coumarins) are not suitable for studying acidic organelles (such as lysosomes) because their fluorescence is significantly decreased under neutral or acidic conditions. This has motivated us to develop probes that can be used in ratio imaging that are strongly fluorescent even in acidic media. RESULTS: The compound 2-(4-pyridyl)-5-((4-(2-dimethylaminoethyl-aminocarbamoyl) methoxy)phenyl)oxazole (PDMPO) was prepared and characterized as a new acidotropic dual-excitation and dual-emission pH indicator. It emits intense yellow fluorescence at lower pH and gives intense blue fluorescence at higher pH. This unique pH-dependent fluorescence property was readily explored to selectively stain lysosomes and to determine the pH of the organelle in an emission-ratio-imaging mode. PDMPO is selectively localized to lysosomes and exhibits a pH-dependent dual excitation and emission. CONCLUSIONS: PDMPO selectively labels acidic organelles (such as lysosomes) of live cells and the two distinct emission peaks can be used to monitor the pH fluctuations of live cells in ratio measurements. Additionally, the very large Stokes shift and excellent photostability of PDMPO make the compound an ideal fluorescent acidotropic probe. The unique fluorescence properties of PDMPO might give researchers a new tool with which to study acidic organelles of live cells.  相似文献   

5.
In order to better understand cellular processes and behavior, a controlled way of studying high numbers of single cells and their clone formation is greatly needed. Numerous ways of ordering single cells into arrays have previously been described, but platforms in which each cell/clone can be addressed to an exact position in the microplate, cultivated for weeks and treated separately in a high-throughput manner have until now been missing. Here, a novel microplate developed for high-throughput single cell/clone cultivation and analysis is presented. Rapid single cell seeding into microwells, using conventional flow cytometry, allows several thousands of single cells to be cultivated, short-term (72 h) or long-term (10-14 days), and analyzed individually. By controlled sorting of individual cells to predefined locations in the microplate, analysis of single cell heterogeneity and clonogenic properties related to drug sensitivity can be accomplished. Additionally, the platform requires remarkably low number of cells, a major advantage when screening limited amounts of patient cell samples. By seeding single cells into the microplate it is possible to analyze the cells for over 14 generations, ending up with more than 10 000 cells in each well. Described here is a proof-of-concept on compartmentalization and cultivation of thousands of individual cells enabling heterogeneity analysis of various cells/clones and their response to different drugs.  相似文献   

6.
Development of techniques for the analysis of the content of individual cells represents an important direction in modern bioanalytical chemistry. While the analysis of chromosomes, organelles, or location of selected proteins has been traditionally the domain of microscopic techniques, the advances in miniaturized analytical systems bring new possibilities for separations and detections of molecules inside the individual cells including smaller molecules such as hormones or metabolites. It should be stressed that the field of single cell analysis is very broad, covering advanced optical, electrochemical and mass spectrometry instrumentation, sensor technology and separation techniques. The number of papers published on single cell analysis has reached several hundred in recent years. Thus a complete literature coverage is beyond the limits of a journal article. The following text provides a critical overview of some of the latest developments with the main focus on mass spectrometry, microseparation methods, electrophoresis in capillaries and microfluidic devices and respective detection techniques for performing single cell analyses.  相似文献   

7.
We determined the feasibility of using capillary electrophoresis with postcolumn laser-induced fluorescence (CE-LIF) detection to characterize electrophoretic properties of isolated cell nuclei and impurities present in nuclear fractions. These fractions were isolated from NS-1 mouse hybridoma cells, stained with hexidium iodide, a DNA intercalating dye, and analyzed by CE-LIF detection. The corresponding electropherograms display two features: (i) broad peaks (6-90 s wide) caused by the cell culturing media and by free-DNA intercalated with hexidium iodide, and (ii) a large number of narrow peaks (180 ms wide), resulting from DNA associated with individual intact or disrupted nuclei. We confirmed that the narrow peaks were not caused by contaminating mitochondria. The overall electrophoretic mobility range of disrupted nuclei is 0 to -5 x 10(-4)cm(2)/Vs, while intact nuclei seem to have mobilities in the -1.5 to -3.5 x 10(-4)cm(2)/Vs range. Furthermore, the highly sensitive CE-LIF method reveals a high abundance of disrupted nuclei that cannot be directly observed by confocal microscopy.  相似文献   

8.
This review covers recent developments in the preparation, manipulation, and analyses of subcellular environments. In particular, it highlights approaches for (1) separation and detection of individual organelles, (2) preparation of ultra-pure organelle fractions, and (3) utilization of novel labeling strategies. These approaches, based on innovative technologies such as microfluidics, immunoisolation, mass spectrometry and electrophoresis, suggest that subcellular analyses will soon become as commonplace as single cell and bulk cellular assays.  相似文献   

9.
The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.  相似文献   

10.
The orderly organelle interaction network is prerequisite for normal life activity of cell, ensuring a balance between communication and uniqueness of organelles. Disorder organelle interaction is implicated in the occurrence and development of many diseases. An in-depth understanding of mechanisms of orderly organelle interaction helps to reveal the pathogenesis of related diseases. Chemical and genetic tools have identified the roles of specific proteins in orderly organelle interaction; however, little is known about the modes, functions and mechanisms of orderly interaction between organelles. With rapid development of imaging tools, deep-going insights into the structure feature of cell membranes have substantially improved our understanding of the mechanisms of ordered organelle interactions. This review summarizes the conventional molecular mechanism of orderly organelle interactions, and highlights the new progress regarding membrane structure and the novel structural mechanism of orderly organelle transport.  相似文献   

11.
12.
Xiao H  Li X  Zou H  Yang L  Wang Y  Wang H  Le XC 《Electrophoresis》2006,27(17):3452-3459
We report a method of coupled CE-LIF detection with flow cytometry for high-throughput determination and quantitation of fluorophores in single intact K562/S (KS) cells. The membrane properties of KS cell including fluophore transport rate and apparent permeability coefficient were further quantitatively characterized. The method has advantages for accurate quantitation and unique capacity of high-throughput analysis. The strategy will be useful for the quantitation of fluorophores in the intact cells, such as measurement of multidrug resistance, quantitation of specific protein expression, and quantitative characterization of protein and enzyme functions.  相似文献   

13.
Whiting CE  Arriaga EA 《Electrophoresis》2006,27(22):4523-4531
This report is the first demonstration of the use of uncoated and dynamically coated capillaries for the separation of individual mitochondria via CE. Currently, the analysis of individual mitochondria relies upon fused-silica capillaries coated with a hydrophilic polymer (e.g. poly(acryloylaminopropanol)), which is used to minimize adsorption to the capillary surface. Both uncoated fused-silica capillaries and 0.2% w/w poly(vinyl alcohol) dynamic coating solutions are used to successfully analyze isolated individual mitochondrial particles using CE-LIF. While it was possible to separate mouse liver mitochondria on an uncoated capillary, rat liver mitochondria proved to have strong adsorption characteristics that only allowed them to be adequately separated with a PVA dynamic coating or a poly(acryloylaminopropanol) (AAP) capillary. The possible causes for this adsorption are analyzed and discussed. This study shows that uncoated and dynamically coated capillaries can be used in place of AAP-coated capillaries to analyze mitochondria and suggests the use of these capillaries for the analysis of other organelles, offering a greatly simplified method for the analysis of individual organelles.  相似文献   

14.
This seminar will cover two research topics in our group. The first one is nanometer scale sensing with living biological cells. In the biomedical sciences and technologies, the greatest advances in the last decade have been inspired by the genome project. What comes after the deciphering of the genetic code? Certainly one next step is the biochemistry driven by the gene, from the cellular nucleus to its organelles, cytoplasm and beyond. One important goal is to follow in real time the biochemical kinetics and dynamics of the living cell, much of which is in terms of small ions and biomolecules. Using both optical microscopy/spectroscopy and scanning probe microscopy, we have imaged single living cells and probed single molecule interactions.  相似文献   

15.
Malek AH  Khaledi MG 《Electrophoresis》2003,24(6):1054-1062
Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used for evaluation of the effectiveness of delivery and fate of a model 25-mer DNA-based phosphorothiate antisense drug in cells. The antisense molecule was delivered to the cells through a simple incubation and by using a cationic liposome (Cytofectin GS 3815). The cationic lipid interacted with the negatively charged antisense to form a more positively charged complex. It was observed that uptake of the liposome-antisense complex by the cell was dependent on concentration of lipid, duration of transfection, and the cell type. The antisense drug interacted with intracellular components such as proteins and additional steps were needed to quantify the free antisense. Proteinase-K was able to release antisense from proteins. However, the addition of sodium dodecyl sulfate (SDS) to the sample or running buffer was more effective than Proteinase-K to release both naked and liposome-bound antisense from the cellular materials. Analysis of single HeLa cells for uptake of the unbound and liposome-complexed antisense revealed averages of 8.9x10(-19) moles and 4.9x10(-18) moles, respectively. The amount of uptake, however, varied greatly among individual cells and depended on the delivery method. With liposome-mediated delivery, the relative standard deviation (RSD) for the amount of antisense in individual cells was 130%, while the variation was much smaller (RSD = 45%) when the cells were incubated with the unbound antisense. These uptake variations agreed with those obtained from flow cytometry analysis.  相似文献   

16.
Microsystems based on microwell arrays have been widely used for studies on single living cells. In this work, we focused on the subcellular level in order to monitor biological responses directly on individual organelles. Consequently, we developed microwell arrays for the entrapment and fluorescence microscopy of single isolated organelles, mitochondria herein. Highly dense arrays of 3-μm mean diameter wells were obtained by wet chemical etching of optical fiber bundles. Favorable conditions for the stable entrapment of individual mitochondria within a majority of microwells were found. Owing to NADH auto-fluorescence, the metabolic status of each mitochondrion was analyzed at resting state (Stage 1), then following the addition of a respiratory substrate (Stage 2), ethanol herein, and of a respiratory inhibitor (Stage 3), antimycin A. Mean levels of mitochondrial NADH were increased by 29 % and 35 % under Stages 2 and 3, respectively. We showed that mitochondrial ability to generate higher levels of NADH (i.e., its metabolic performance) is not correlated either to the initial energetic state or to the respective size of each mitochondrion. This study demonstrates that microwell arrays allow metabolic studies on populations of isolated mitochondria with a single organelle resolution.
Figure
Microwell arrays, build up from optical fiber bundles, were used for the entrapment and monitoring by fluorescence microscopy of populations of single mitochondria. Mitochondrial NADH was quantified under several metabolic states to study individual mitochondria responses simultaneously with whole population behaviors.  相似文献   

17.
18.
The doxorubicin (DOX) uptake in single human leukemia K562 cells with changes in both drug dosage and exposure period was studied using capillary electrophoresis (CE) coupled with laser-induced fluorescence (LIF) detection. The cells were treated with DOX at different concentrations (1, 3, 10, 20, 30, and 50 μM) and for different exposure times (1, 3, 5, 24, and 48 h). At least 20 cells were analyzed for each DOX-treated cell population. A marked heterogeneity in DOX uptake among single cells was observed, because the relative standard deviation of the uptake of DOX by single cells ranged from 24.0% to 61.1% within each cell population. The cell-to-cell heterogeneity in DOX uptake first decreased and then became constant with increasing drug concentration, but it did not exhibit regular variation with increasing exposure time. The mean DOX uptake was a linear function of drug concentration (r ≥ 0.9667). In terms of the correlation with exposure time, the mean DOX uptake reached its maximum at 3 h for the cell populations treated with 1–10 μM DOX, while it kept increasing during 48 h exposure of cell populations to 20–50 μM DOX. Because it eliminates DOX fluorescence quenching and sample loss, the CE-LIF method directly detects the true DOX uptake by single cells, and thus presents accurate information on both the cell-to-cell heterogeneity in DOX uptake and the patterns of DOX uptake in K562 cells as functions of drug concentration and exposure time.  相似文献   

19.
Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy.  相似文献   

20.
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号