首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.  相似文献   

2.
Supramolecular rotators of hydrogen-bonding assemblies between anilinium (Ph-NH 3 (+)) or adamantylammonium (AD-NH 3 (+)) and dibenzo[18]crown-6 (DB[18]crown-6) or meso-dicyclohexano[18]crown-6 (DCH[18]crown-6) were introduced into [Ni(dmit) 2] salts (dmit (2-) is 2-thioxo-1,3-dithiole-4,5-dithiolate). The ammonium moieties of Ph-NH 3 (+) and AD-NH 3 (+) cations were interacted through N-H (+) approximately O hydrogen bonding with the six oxygen atoms of crown ethers, forming 1:1 supramolecular rotator-stator structures. X-ray crystal-structure analyses revealed a jackknife-shaped conformation of DB[18]crown-6, in which two benzene rings were twisted along the same direction, in (Ph-NH 3 (+))(DB[18]crown-6)[Ni(dmit) 2] (-) ( 1) and (AD-NH 3 (+))(DB[18]crown-6)[Ni(dmit) 2] (-) ( 3), whereas the conformational flexibility of two dicyclohexyl rings was observed in (Ph-NH 3 (+))(DCH[18]crown-6)[Ni(dmit) 2] (-) ( 2) and (AD-NH 3 (+))(DCH[18]crown-6)[Ni(dmit) 2] (-) ( 4). Sufficient space for the molecular rotation of the adamantyl group was achieved in the crystals of salts 3 and 4, whereas the rotation of the phenyl group in salts 1 and 2 was rather restricted by the nearest neighboring molecules. The rotation of the adamantyl group in salts 3 and 4 was evidenced from the temperature-dependent wide-line (1)H NMR spectra, dielectric properties, and X-ray crystal structure analysis. ab initio calculations showed that the potential energy barriers for the rotations of adamantyl groups in salts 3 (Delta E approximately 18 kJmol (-1)) and 4 (Delta E approximately 15 kJmol (-1)) were similar to those of ethane ( approximately 12 kJmol (-1)) and butane (17-25 kJmol (-1)) around the C-C single bond, which were 1 order of magnitude smaller than those of phenyl groups in salts 1 (Delta E approximately 180 kJmol (-1)) and 2 (Delta E approximately 340 kJmol (-1)). 1D or 2D [Ni(dmit) 2] (-) anion arrangements were observed in the crystals according to the shape of crown ether derivatives. The 2D weak intermolecular interactions between [Ni(dmit) 2] (-) anions in salts 1 and 3 led to Curie-Weiss behavior with weak antiferromagnetic interaction, whereas 1D interactions through lateral sulfur-sulfur atomic contacts between [Ni(dmit) 2] (-) anions were observed in salts 2 and 4, whose magnetic behaviors were dictated by ferromagnetic (salt 2) and singlet-triplet (salt 4) intermolecular magnetic interactions, respectively.  相似文献   

3.
Zheng XD  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(23):10858-10865
The reactions of racemic and enantiopure macrocyclic compounds [Ni(alpha-rac-L)](ClO(4))(2) (containing equal amounts of SS and RR enantiomers), [Ni(alpha-SS-L)](ClO(4))(2), and [Ni(alpha-RR-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile/water afford three 1D helical chains of {[Ni(f-rac-L)][Ag(CN)(2)](2)}(n) (1), {[Ni(f-SS-L)](2)[Ag(CN)(2)](4)}(n) (Delta-2), and {[Ni(f-RR-L)](2)[Ag(CN)(2)](4)}(n) (Lambda-2); one dimer of [Ni(f-rac-L)][Ag(CN)(2)](2) (3); and one trimer of [Ni(f-rac-L)Ag(CN)(2)](3).(ClO(4))(3) (4) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Compounds 1, Delta-2, Lambda-2, and 3, which are supramolecular isomers, are constructed via argentophilic interactions. In 1, [Ni(f-RR-L)][Ag(CN)(2)](2) enantiomers alternately connect with [Ni(f-SS-L)][Ag(CN)(2)](2) enantiomers through intermolecular argentophilic interactions to form a 1D meso-helical chain, and the 1D chains are further connected through the interchain hydrogen bonds to generate a 2D network. When chiral [Ni(alpha-SS-L)](ClO(4))(2) and [Ni(alpha-RR-L)](ClO(4))(2) were used as building blocks, two supramolecular stereoisomers of Delta-2 and Lambda-2 were obtained, which show the motif of homochiral right-handed and left-handed helical chains, respectively, and the 1D homochiral helical chains are linked by the interchain hydrogen bonds to form a 3D structure. In 3, a pair of enantiomers of [Ni(f-RR-L)][Ag(CN)(2)](2) and [Ni(f-SS-L)][Ag(CN)(2)](2) connect with each other through intermolecular argentophilic interactions to form a dimer. The reaction of [Ni(alpha-rac-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile gives a trimer of 4; each trimer is chiral with unsymmetrical RR, RR, and SS, or RR, SS, and SS configurations. The homochiral nature of Delta-2 and Lambda-2 was confirmed by the results of solid circular dichroism spectra measurements. The solid samples of 1-4 show strong fluorescent emissions at room temperature.  相似文献   

4.
Hydrogen-bonded supramolecular cation assemblies of (NH4+/NH2-NH3+)(crown ether), where the crown ether is [12]crown-4, [15]crown-5, or [18]crown-6, were incorporated into electrically conducting [Ni(dmit)2] salts (dmit2- = 2-thioxo-1,3-dithiole-4,5-dithiolate). (NH4+)([12]crown-4)[Ni(dmit)2]3(CH3CN)2 had a pyramidal shape, while ionic channels were observed in (NH4+)(0.88)([15]crown-5)[Ni(dmit)(2)]2 and (NH4+)(0.70)([18]crown-6)[Ni(dmit)(2)]2. Both (NH4+)(0.88)([15]crown-5) and (NH4+)(0.70)([18]crown-6) contained regularly spaced [Ni(dmit)(2)] stacks formed by N-H.O hydrogen bonding between the oxygen atoms in crown ethers and the NH4+ ion. NH4+ occurred nonstoichiometrically; there were vacant ionic sites in the ionic channels. The ionic radius of NH4+ is larger than the cavity radius of [15]crown-5 and [18]crown-6. Therefore, NH4+ ions could not pass through the cavity and were distributed randomly in the ionic channels. The static disorder caused the conduction electrons to be randomly localized to the [Ni(dmit)2] stacks. Hydrazinium (NH2-NH3+) formed the supramolecular cations in (NH2-NH3+)([12]crown-4)2[Ni(dmit)2]4 and (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6, possessing a sandwich and club-sandwich structure, respectively. To the best of our knowledge, these represent the first hydrazinium-crown ether assemblies to be identified in the solid. In the supramolecular cations, hydrogen bonding was detected between the ammonium or the amino protons of NH2-NH3+ and the oxygen atoms of crown ethers. The sandwich-type cations coexisted with the [Ni(dmit)2] dimer stacks. Although the assemblies were typically semiconducting, ferromagnetic interaction (Weiss temperature = +1 K) was detected in the case of (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6. The (NH2-NH3+)0.8([18]crown-6)[Ni(dmit)2]2 and (NH4+)0.76([18]crown-6)[Ni(dmit)2]2 crystals were isomorphous. The large and flexible [18]crown-6 allowed for maintaining the same ionic channel structure through replacement of the NH4+ cation by NH2-NH3+.  相似文献   

5.
Hydrogen-bonded assemblies of the two-electron reduced mixed-valence Keggin clusters [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) were obtained by the one-pot electron-transfer reactions between p-phenylenediamine (PPD) or 2,3,5,6-tetramethyl-PPD (TMPPD) (donors) and H(+)(3)[PMo(12)O(40)](3-) or H(+)(4)[SiMo(12)O(40)](4-) (acceptors) in CH(3)CN. The redox states of the [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) clusters were confirmed by the redox titrations and electronic absorption measurements. In (HPPD(+))(3)(H(+))(2)[PMo(12)O(40)](5-)(CH(3)CN)(3-6) (1), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HPPD(+) (or diprotonated H2PPD(2+)) and the [PMo(12)O(40)](5-) resulted in a windmill-like assembly and hydrophilic one-dimensional channels are formed with a cross-sectional area of 0.065 nm(2), and these are filled by the CH(3)CN molecules. Also, the CH(3)CN molecules in salt 1 were removed by immersing the single crystals of 1 into H(2)O, CH(3)OH, and C(2)H(5)OH solvents. In the compound, (HTMPPD(+))(6)[SiMo(12)O(40)](6-)(CH(3)CN)(6) (2), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HTMPPD(+) molecules and the [SiMo(12)O(40)](6-) formed a "Saturn-ring"-like assembly. Each Saturn-ring was arranged into an hexagonally packed array via hydrogen-bonded and π-stacking interactions of HTMPPD(+), while the CH(3)CN solvent present in salt 2 are only found in the zero-dimensional isolated cavities.  相似文献   

6.
Full structural characterisation and complete synthetic procedures for three monohalogenated cobaltacarborane compounds closo-[3-Co(eta5-C5H5)-8-X-1,2-C2B9H10] (X=Cl (1), Br (2), I (3)) and the dibromo derivative closo-[3-Co(eta5-C5H5)-8,9-Br2-1,2-C2B9H9] (4) are reported. The supramolecular structures of 1, 3, and 4 reveal the existence of intermolecular C--HX--B interactions. The role of these interactions has been investigated through a CSD search and subsequent analysis of the reported crystalline compounds. The results show that halogens become reasonably good hydrogen-bond acceptors when bonded to boron and, in this respect, are comparable in strength to metal-bound halogens.  相似文献   

7.
N-Containing heteroaromatics 1,2,4,5-tetra(pyridin-3-yl)benzene[1,2,4,5-T(3-PY)B] and 1,2,4,5-tetra-(pyridin-4-yl)benzene[1,2,4,5-T(4-PY)B] were each co-crystallized with 1,2-diiodo-tetrafluoro-benzene(1,2-DITFB), or 1,4-diiodo-tetrafluoro-benzene(1,4-DITFB), respectively, generating four co-crystals, namely, (1,2-DITFB)4·[1,2,4,5-T(3-PY)B](1), (1,2-DITFB)4·[1,2,4,5-T(4-PY)B](2), (1,4-DITFB)2·[1,2,4,5-T(3-PY)B]·CHCl3(3), and (1,4-DITFB)·[1,2,4,5-T(4-PY)B]·2CHCl3(4). This study takes aim at providing an insight into the relative importance of fundamental solid state halogen bonding interactions(i.e., halogen…N, halogen…halogen, and halogen…π) in systems. The effects of the donor and acceptor on supramolecular assembly and the crystal structure determined interactions were discussed. The N…I halogen bonds are the main directing interactions responsible for the observed structures. In compounds 1 and 2, the donors exhibited lower-than-expected supramolecular connectivity. In spite of this, co-crystal 2 exhibits polymeric structures consisting of infinite one-dimensional(1D) double-zigzag chains of alternating electron donor and acceptor. The basic structure of co-crystals 3 and 4 is also infinite 1D chain. Therefore, the 1D halogen bonded supramolecular assemblies can be obtained by matching the appropriate donor and acceptor.  相似文献   

8.
Two new 1D helical coordination polymers based on polyoxometalate were synthesized by self-assembly of Keggin-type POMs and copper salts in the presence of triangular N-heterocyclic derivatives or long-chain N-containing carboxylate ligand, that are, (H3O)[{Cu(H2tpim)2}{SiMo12O40}] · 0.5H2O [Htpim = 2,4,5-tri(4-pyridyl)-imidazole] ( 1 ) and [Cu2(Hcpp)3(cpp)(H2O)][PMo12O40] · 2H2O [Hcpp = 1-(4-cyanobenzyl)-3–2-yl)pyrazole] ( 2 ). Their structures were determined by single-crystal X-ray diffraction and further characterized by elemental analyses and TG analyses. Compounds 1 and 2 exhibit (1D→2D) interdigitated architectures assembled from 1D helical chains. In compound 1 , the achiral 2D interdigitated nets containing left- and right-handed helixes are further interdigitated with each other to form a 3D supramolecular framework. In compound 2 , adjacent 2D interdigitated layers with opposite chirality are further extended by supramolecular interactions into a 3D supramolecular network, in which non-coordinating Keggin-type POMs as guests are encapsulated.  相似文献   

9.
A one-dimensional (1D) supramolecular rare earth complex [Nd(NO3)2L2-(C3H6O)][NdL(NO3)4]} (L = N-(6-(4-methylpyridinyl))ketoacetamide) has been prepared and characterized by elemental analysis, IR and electronic spectroscopy, and single-crystal X-ray diffraction. The crystal crystallizes in the triclinic system, space group P1 with a = 0.9146(6), b = 1.2581(8), c = 2.2316(14) nm, α = 99.352(10), β = 97.209(9), γ = 103.935(9)°, V = 2.422(3) nm3, Dc = 1.776 g/cm3, C33H42N12Nd2O25, Mr = 1295.27, Z = 2, F(000) = 1288, μ = 2.217 mm-1, R = 0.0508 and wR = 0.1046 for 5173 observed reflections (I > 2σ(I)). In the structure of the title complex, one-dimensional supramolecular double-chains are formed by intermolecular hydrogen bonding interactions.  相似文献   

10.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been scrutinized by scanning tunneling microscopy (STM) at the liquid-solid interface. First, the influence of core symmetry on the network structure was investigated by comparing the two-dimensional (2D) ordering of rhombic bisDBA 1a and triangular DBA 2a (Figure 1). BisDBA 1a forms a Kagomé network upon physisorption from 1,2,4-trichlorobenzene (TCB) onto highly oriented pyrolytic graphite (HOPG). Under similar experimental conditions, DBA 2a shows the formation of a honeycomb network. The core symmetry and location of alkyl substituents determine the network structure. The most remarkable feature of the DBA networks is the interdigitation of the nonpolar alkyl chains: they connect the pi-conjugated cores and direct their orientation. As a result, 2D open networks with voids are formed. Second, the effect of alkyl chain length on the structure of DBA patterns was investigated. Upon increasing the length of the alkyl chains (DBAs 3c-e) a transition from honeycomb networks to linear networks was observed in TCB, an observation attributed to stronger molecule-substrate interactions. Third, the effect of solvent on the structure of the nonpolar DBA networks was investigated in four different solvents: TCB as a polar aromatic solvent, 1-phenyloctane as a solvent having both aromatic and aliphatic moieties, n-tetradecane as an aliphatic solvent, and octanoic acid as a polar alkylated solvent. The solvent dramatically changes the structure of the DBA networks. The solvent effects are discussed in terms of factors that influence the mobility of molecules at the liquid-solid interface such as solvation.  相似文献   

11.
A series of alpha,omega-bis donor substituted oligophenylenevinylene dimers held together by the [2.2]paracyclophane core were synthesized to probe how the number of repeat units and through-space delocalization influence two-photon absorption cross sections. Specifically, the paracyclophane molecules are tetra(4,7,12,15)-(4'-dihexylaminostyryl)[2.2]paracyclophane (3R(D)), tetra(4,7,12,15)-(4' '-(4'-dihexylaminostyryl)styryl)[2.2]paracyclophane (5R(D)), and tetra(4,7,12,15)-(4' "-(4' '-(4'-dihexylaminostyryl)styryl)styryl)[2.2]paracyclophane (7R(D)). The compounds bis(1,4)-(4'-dihexylaminostyryl)benzene (3R) and bis(1,4)-(4' '-(4'-dihexylaminostyryl)styryl)benzene (5R) were also synthesized to reveal the properties of the "monomeric" counterparts. The two-photon absorption cross sections were determined by the two-photon induced fluorescence method using both femtosecond and nanosecond pulsed lasers as excitation sources. While there is a red shift in the linear absorption spectra when going from the "monomer" chromophore to the paracyclophane "dimer" (i.e., 3R --> 3R(D), 5R --> 5R(D)), there is no shift in the two-photon absorption maxima. A theoretical treatment of these trends and the dependence of transition dipole moments on molecular structure rely on calculations that interfaced time-dependent density functional theory (TDDFT) techniques with the collective electronic oscillator (CEO) program. These theoretical and experimental results indicate that intermolecular interactions can strongly affect B(u) states but weakly perturb A(g) states, due to the small dipole-dipole coupling between A(g) states on the chromophores in the dimer.  相似文献   

12.
A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiWlIO39Co]-2H20(1)[bpp=l,3-bis(4-pyridyl)propane] was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction, IR, TG, and cyclic voltammetry. Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands. Additionally, the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure. The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail. The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1 mol/L 1-12SO4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp, which is very important for practical applications in electrode modification.  相似文献   

13.
Four novel 2,3-naphtho-15-crown-5 (N15C5) and 2,3-naphtho-18-crown-6 (N18C6) complexes [Na(N15C5)]2[Pd(SCN)4] (1), [Na(N15C5)]2[Pt(SCN)4] (2), [K(N18C6)]2[Pd(SCN)4] (3) and [K(N18C6)]2[Pt(SCN)4] (4) were synthesized and characterized by elemental analysis, FT-IR spectra and single-crystal X-ray diffraction. The structure analyses reveal that both 1 and 2 are assembled into zigzag chains by the strong intermolecular pi-pi stacking interactions between adjacent 2,3-naphthylene groups of N15C5. The molecules of complexes 3 and 4 are linked into 1D chains by the bridging K-O(ether) interactions between the adjacent [K(N18C6)]+ units and the resulting chains are constructed into a novel 2D network by inter-chain pi-pi stacking interactions between the neighboring 2,3-naphthylene moieties of N18C6. According to the supramolecular self-assemblies of complexes 1-4, two types of stacking model of naphthylene groups are given and discussed.  相似文献   

14.
To develop a novel pi-conjugated molecule-based supramolecular assembly, we designed and synthesized trisdehydrotribenzo[12]annulene ([12]DBA) derivative 2 with three carboxyl groups at the periphery. Recrystallization of 2 from DMSO gave a crystal of the solvate 23 DMSO. Crystallographic analysis revealed, to our surprise, that a face-to-face pi-stacked one-dimensional (1D) assembly of 2 was achieved and that the DMSO molecule played a significant role as a "structure-dominant element" in the crystal. This is the first example of [12]DBA to stack completely orthogonal to the columnar axis. To reveal its superstructure-dependent optical and electrical properties, 2 and its parent molecule 1, which crystallizes in a herringbone fashion, were subjected to fluorescence spectroscopic analysis and charge-carrier mobility measurements in crystalline states. The 1D stacked structure of 2 provides a red-shifted, broadened, weakened fluorescence profile (lambda(max) = 545 nm, phi(F) = 0.01), compared to 1 (lambda(max) = 491 nm, phi(F) = 0.12), due to strong interactions between the p orbitals of the stacked molecules. The charge-carrier mobility of the single crystal of 23 DMSO, as well as 1, was determined by flash photolysis time-resolved microwave conductivity (FP-TRMC) measurements. The single crystal of 23 DMSO revealed significantly-anisotropic charge mobility (sigma(mu) = 1.5x10(-1) cm(2) V(-1) s(-1)) along the columnar axis (crystallographic c axis). This value is 12 times larger than that along the orthogonal axis (the a axis).  相似文献   

15.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb type patterns, whereas those with long alkoxy chains form predominantly dense-packed linear type patterns. Added nanographene molecules adsorb in the pores of the existing 2D porous honeycomb type patterns or, more interestingly, they even convert the guest-free dense-packed linear-type patterns into guest-containing 2D porous honeycomb type patterns. For the DBA derivative with the longest alkoxy chains (OC20H41), the pore size, which depends on the length of the alkoxy chains, reaches 5.4 nm. Up to a maximum of six nanographene molecules can be hosted in the same cavity for the DBA derivative with the OC20H41 chains. The host matrix changes its structure in order to accommodate the adsorption of the guest clusters. This flexibility arises from the weak intermolecular interactions between interdigitating alkoxy chains holding the honeycomb structure together. Diverse dynamic processes have been observed at the level of the host matrix and the coadsorbed guest molecules.  相似文献   

16.
Four new cobalt coordination polymers, (EMIm)[Co2(TMA-H)2(44bpy)3]Br 1, (EMIm)[Co(TMA-H)(44bpy)2](44bpy)Br 2, (EMIm)[Co(TMA)(Im-H)]3 and (EMIm)2[Co(TMA)2(TED-H2)] 4, were prepared from 1-ethyl-3-methyl imidazolium bromide (EMIm-Br). All the compounds have similar two-dimensional cobalt trimesate (TMA) coordination layers but different three-dimensional supramolecular architectures that contain one of three potentially ditopic amines, 4,4'-bipyridine (44bpy), imidazole (Im-H) and triethylenediamine (TED). Two-fold interpenetration of hydrogen-bonding networks was found for 1, 2 and 4. The coordination layers of 1 and 2 are neutral while 3 and 4 have anionic molecular assemblies. The use of organic amines, that act as supramolecular bridging ligands, introduces hydrogen-bond-directing effects in the ionothermal synthesis of metal coordination polymers. Hydrogen bonding helps to align the packing between the coordination layers and control the formation of 3D supramolecular networks. In 1, hydrogen bonds between the ionic species within the channels direct the alignment of non-directional electrostatic interactions between EMIm+ and Br(-) ions, which is a rare case of a hydrogen-bond-templating effect of ionic liquids in ionothermal synthesis.  相似文献   

17.
Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.  相似文献   

18.
Although being composed of trivalent ions, the crystal structure of the supramolecular intercluster compound [Au9(PPh3)8]2[V10O28H3]2 is dominated by short-range intermolecular interactions, i.e., hydrogen bonds, and C-H/pi interactions, avoiding a simple AB-type packing.  相似文献   

19.
A comprehensive investigation of the complementary H‐bonding‐mediated self‐assembly between dipyrrolo[2,3‐b:3′,2′‐e]pyridine (P2P) electron donors and naphthalenediimide/perylenediimide (NDI/PDI) acceptors is reported. The synthesis of parent P2P and several aryl‐substituted derivatives is described, along with their optical, redox, and single‐crystal packing characteristics. The dual functionality of heteroatoms in the P2P/NDI(PDI) assembly, which act as proton donors/acceptors and also contribute to π‐conjugation, leads to H‐bonding‐induced perturbation of electronic levels. Concentration‐dependent NMR and UV/Vis spectroscopic studies revealed a cooperative effect of H‐bonding and π–π stacking interactions. This H‐bonding‐mediated co‐assembly of donor (D) and acceptor (A) components leads to a new charge‐transfer (CT) absorption that can be controlled throughout the visible range. The electronic interactions between D and A were further investigated by time‐dependent DFT, which provided insights into the nature of the CT transition. Electropolymerization of difuryl‐P2P afforded the first conjugated polymer incorporating H‐bonding recognition units in its main chain.  相似文献   

20.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号