首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.  相似文献   

2.
The energy surfaces of the systems LiOH 2 + and NaOH 2 + are studied for a number of different geometries within the SCF MO LCAO framework, using a gaussian basis set to approximate the wavefunction. In the minimum energy geometry of both systems the positive ion is bound to the oxygen atom of the water molecule. The computed binding energies and bond distances are: B SCF(LiOH 2 + ) = 36.0 kcal/mole, d(LiO) = 3.57 a.u., and B SCF(NaOH 2 + ) = 25.2 kcal/mole, d(NaO) = 4.23 a.u., resp. The results are compared with those of H3O+ and discussed in view of ion-solvent interaction in aquous solutions.It is a pleasure to thank our technical staff for the careful preparation of the input for the programs and for its enthusiastic and skilful assistance in running the computer.  相似文献   

3.
4.
Singly and doubly charged chromium-water ion-molecule complexes are produced by laser vaporization in a pulsed-nozzle cluster source. These species are detected and mass-selected in a specially designed time-of-flight mass spectrometer. Vibrational spectroscopy is measured for these complexes in the O-H stretching region using infrared photodissociation spectroscopy and the method of rare gas atom predissociation. Infrared excitation is not able to break the ion-water bonds in these systems, but it leads to elimination of argon, providing an efficient mechanism for detecting the spectrum. The O-H stretches for both singly and doubly charged complexes are shifted to frequencies lower than those for the free water molecule, and the intensity of the symmetric stretch band is strongly enhanced relative to the asymmetric stretch. Partially resolved rotational structure for both complexes shows that the H-O-H bond angle is greater than it is in the free water molecule. These polarization-induced effects are enhanced in the doubly charged ion relative to its singly charged analog.  相似文献   

5.
In support of mass-selected infrared photodissociation (IRPD) spectroscopy experiments, coupled-cluster methods including all single and double excitations (CCSD) and a perturbative contribution from connected triple excitations [CCSD(T)] have been used to study the V+(H2O) and ArV+(H2O) complexes. Equilibrium geometries, harmonic vibrational frequencies, and dissociation energies were computed for the four lowest-lying quintet states (5A1, 5A2, 5B1, and 5B2), all of which appear within a 6 kcal mol(-1) energy range. Moreover, anharmonic vibrational analyses with complete quartic force fields were executed for the 5A1 states of V+(H2O) and ArV+(H2O). Two different basis sets were used: a Wachters+f V[8s6p4d1f] basis with triple-zeta plus polarization (TZP) for O, H, and Ar; and an Ahlrichs QZVPP V[11s6p5d3f2g] and Ar[9s6p4d2f1g] basis with aug-cc-pVQZ for O and H. The ground state is predicted to be 5A1 for V+(H2O), but argon tagging changes the lowest-lying state to 5B1 for ArV+(H2O). Our computations show an opening of 2 degrees -3 degrees in the equilibrium bond angle of H2O due to its interaction with the metal ion. Zero-point vibrational averaging increases the effective bond angle further by 2.0 degrees -2.5 degrees, mostly because of off-axis motion of the heavy vanadium atom rather than changes in the water bending potential. The total theoretical shift in the bond angle of about +4 degrees is significantly less than the widening near 9 degrees deduced from IRPD experiments. The binding energies (D0) for the successive addition of H2O and Ar to the vanadium cation are 36.2 and 9.4 kcal mol(-1), respectively.  相似文献   

6.
Ion-molecule complexes of the form Mg(H2O)Ar(n)+ (n = 1-8) are produced by laser vaporization in a pulsed-nozzle cluster source. These complexes are mass-selected and studied with infrared photodissociation spectroscopy in the O-H stretch region. The spectra are interpreted with the aid of ab initio calculations on the n = 1-5 complexes, including examination of various isomeric structures. The combined spectroscopic and theoretical studies reveal the presence of multiple isomeric structures at each cluster size, as the argon atoms assemble around the Mg(+)(H2O) unit. Distinct infrared resonances are measured for argon-on-metal, argon-on-OH and argon-on-two-OH isomers.  相似文献   

7.
According to a recent study of the H2O and D2O molar volume isotope effect (MVIE) of the alkali metal chloride solutions, neither the standard nor the excess MVIE of the LiCl corresponds to the usual hydrophilic hydration characteristics of the inorganic ions above room temperatures. This phenomenon can not be rationalized by electrostriction, with the collapse of the “loose” tetrahedral (“ice-like”) water structure due to the electrostatic (ion + dipole) interaction.It seemed possible that this unique hydration behaviour of the Li+ would be stronger and could reveal further structural information with a less hydrophilic anion than the chloride. Therefore we have determined the MVIE of the LiI as a function of temperature and concentration. The densities of normal and heavy water solutions of LiI have been measured with six-figure precision at T = (288.15, 298.15, and 308.15) K from (0.03 to 4) molal, m, using a vibrating-tube densitometer. The solvent isotope effect on the apparent molar volume, as well as on the solute and solvent partial molar volumes, was evaluated.As expected, with the rationalization of the MVIE of LiI instead of the geometric structural differences of the isotopic solvents, the energetic contributions have to be considered at all the temperatures investigated. At infinite dilution, a high degree of compensation between the reversed influences of the Li+ and I? on the activities of the isotopic solvents determines the MVIE. By increasing concentration, the highly asymmetric energetic interactions of the Li+ and the I? with the solvent apparently result in a “mutual salting-out” effect. At a concentration ≈0.7m, a uniquely abrupt structural rearrangement results in a “solvent-separated ion-pair” solution structure.  相似文献   

8.
Selective aerobic oxidation of benzylic alcohols and of activated aromatic hydrocarbons occurs in supercritical CO2 as reaction medium using H5PV2Mo10O40 as a quasi-heterogeneous catalyst without further additives or co-solvents; efficient recycling is possible and no metal leaching is detectable in the product stream.  相似文献   

9.
The energy of the dihydrated lithium cation Li+·2H2O is studied in several different points within the SCF MO LCAO framework, using a gaussian basis set to approximate the wavefunction. The computed binding energies (hydration energies) and bond distances are compared to the values found for the monohydrate. The results are discussed in view of ion-solvent interaction, and especially of the effect of ions on adjacent hydrogen bonds, in aqueous solutions.It is a pleasure to thank our technical staff for the careful preparation of the input for the programs and for its enthusiastic and skilful assistance in running the computer.  相似文献   

10.
The energy surface of the dihydrated fluoride anion (F·2H2O)–1 is studied for a number of different geometry points near the equilibrium structure within the SCF LCAO MO framework, using an extended gaussian basis set to approximate the molecular wavefunctions. For the first and second hydration step of the fluoride anion the corresponding hydration energies are calculated to beB 1 scf =24.1 kcal/mole andB 2 SCF =20.8 kcal/mole (experimental measurements: 23.3 kcal/mole and 16.6 kcal/mole, respectively). The hydration energies and equilibrium bond distances obtained for the dihydrated fluoride anion (F·2H2O) are compared with those found for the monohydrate (FHOH) and with corresponding results of the dihydrated lithium cation (Li · 2H2O)+. The system (F·2H2O) is taken as a very simple model to discuss some basic features of the hydration process of small ions and to study the influence of a negative ion on an adjacent hydrogen bond.We would like to thank our technical staff for valuable help in carrying out these calculations.  相似文献   

11.
12.
Previous studies have classified a series of nonheme iron catalysts for olefin cis-dihydroxylation by H2O2 into two groups. Complex 1, [(TPA)Fe(OTf)2], representative of Class A catalysts, forms a low-spin FeIII-OOH intermediate that gives rise to a high-valent FeV(=O)OH oxidant. The preference of this catalyst for electron-rich olefins demonstrates its electrophilic character. On the other hand, complex 2, [(6-Me3-TPA)Fe(OTf)2], representative of Class B catalysts, prefers instead to oxidize electron-deficient olefins, suggesting an oxidant with nucleophilic character. It is suggested that such a nucleophilic oxidant may be the high-spin FeIII-OOH intermediate derived from 2 or the FeIV(=O)(*OH) species derived therefrom.  相似文献   

13.
14.
A quantitative structure-reactivity relationship has been derived from the results of B3LYP/6-311+G calculations on the hydration of carbon dioxide by a series of zinc complexes designed to mimic carbonic anhydrase. The reaction mechanism found is general for all complexes investigated. The reaction exhibits a low (4-6 kcal/mol) activation energy and is exothermic by about 8 kcal/mol. The calculations suggest an equilibrium between Lipscomb and Lindskog intermediates. The effectiveness of the catalysis is a function of the nucleophilicity of the zinc-bound hydroxide and the nucleofugicity of the zinc-bound bicarbonate. Hydrogen bridging of the bicarbonate to NH moieties in the ligands also plays an important role.  相似文献   

15.
Ab initio calculations on the formation of carbonic acid from the hydration of carbon dioxide with water dimer are re-examined. Fully optimized geometries of the three stationary points (minima and transition state) with the 3-21G basis set are reported. They possess non-planar structures. The inclusion of polarization (with the 6-31G* basis) and electron correlation (via Møller-Plesset perturbation theory to second through to fourth-order using the 6-31G basis) tends to enlarge the energy barrier (35–40 kcal mol−1) for the double hydrogen transfer. This suggests that the neutral hydrolysis of CO2 could require more water molecules (an oligomer) in an autocatalytic process rather than a dimer.  相似文献   

16.
In this study, the hydration of carbon dioxide and the formation of bicarbonate in human carbonic anhydrase II have been examined. From semiempirical QM/MM molecular dynamics studies, dominant conformations of the protein backbone, possibly contributing to the catalytic activity, have been isolated and further examined by means of density functional QM/MM methods. In agreement with experimental observations, a binding site for cyanate, which acts as an inhibitor, has been located, whereas for carbon dioxide, depending on the conformation of the protein environment, either a different binding site or no binding site has been found. In the latter case, carbon dioxide diffuses barrierless to the zinc-bound oxygen, and then a weakly bound bicarbonate complex is formed. The formed complex is characterized by a long C-O bond to the zinc-bound hydroxide. The nature of the calculated stationary points was verified by determination of vibrational frequencies. Finally, the dissociation of the formed bicarbonate from zinc has been considered. Therefore, a water molecule was included in the QM zone of the QM/MM hybrid potential, and minimization yielded a pentacoordinated intermediate. From a potential energy scan, an activation energy of 6.2 kcal/mol for dissociation of bicarbonate from Zn has been found.  相似文献   

17.
双氧水(H2O2)是一种重要的绿色氧化剂,广泛应用于纺织、医疗、废水处理、军事等重要领域.目前, H2O2的工业生产以蒽醌法为主,该法设备投资大、运行成本高,同时工艺涉及大量的有机溶液,活性中间体蒽醌也会发生缓慢降解,产生有毒副产物.与蒽醌法相比,通过负载型贵金属催化剂催化H2与O2反应直接合成H2O2,过程绿色环保且生产工艺简单,引起了各界广泛关注.然而,从热力学上分析, H2和O2更容易反应生成H2O, H2O2只是该反应的中间产物,会继续发生加氢和直接分解反应生成H2O,导致H2和O2的低效利用,开发高H2O2选择性且高反应效率的催化剂已成为氢氧直接合成H2O2研究的重点与难点.目前大部分研究策略旨在通过调控或影响反应中心结构、价态来抑制H2O2的副反应,进而提升H2O2的选择性和反应效率;尽管已取得了良好的进展,但仍需发展新的调控策略来满足工业应用的要求.本课题组前期研究表明,促使H2O2从催化剂上脱附可以有效地提升H2O2的选择性和产率.相比于针对反应中心的调控,不稳定的H2O2从催化剂上快速脱附同样起到抑制H2O2参与副反应的作用.为此,本文提出一种炭量可控的非均一界面改性方法,以常规的Pd/TiO2作为研究对象,借助各种结构表征,发现炭物种在TiO2表面呈非均一分散状态,而且改性对于催化剂的几何结构影响较小;另外,催化剂表面的疏水性会随着碳含量的增加而增加,导致其与H2O2间的吸附能相应变小.反应结果显示,表面非均一的炭化改性技术可以显著提升Pd/TiO2催化剂的H2O2选择性和产率.通过构效关系分析,可知这种改性技术可以保持Pd颗粒与TiO2间相互作用的同时,还可以促进H2O2的快速脱附,进而提升改性Pd/TiO2催化剂的H2O2直接合成效率.该改性方法简单、易控,可拓展应用到其他类型催化剂的H2O2直接合成性能调控与改进.  相似文献   

18.
19.
The reactions of H2O+, H3O+, D2O+, and D3O+ with neutral H2O and D2O were studied by tandem mass spectrometry. The H2O+ and D2O+ ion reactions exhibited multiple channels, including charge transfer, proton transfer (or hydrogen atom abstraction), and isotopic exchange. The H3O+ and D3O+ ion reactions exhibited only isotope exchange. The variation in the abundances of all ions involved in the reactions was measured over a neutral pressure range from 0 to 2 × 10−5 Torr. A reaction scheme was chosen, which consisted of a sequence of charge transfer, proton transfer, and isotopic exchange reactions. Exact solutions to two groups of simultaneous differential equations were determined; one group started with the reaction of ionized water, and the other group started with the reactions of protonated water. A nonlinear least-squares regression technique was used to determine the rate coefficients of the individual reactions in the schemes from the ion abundance data. Branching ratios and relative rate coefficients were also determined in this manner.A delta chi-squared analysis of the results of the model fitted to the experimental data indicated that the kinetic information about the primary isotopic exchange processes is statistically the most significant. The errors in the derived values of the kinetic information of subsequent channels increased rapidly. Data from previously published selected ion flow tube (SIFT) study were analyzed in the same manner. Rigorous statistical analysis showed that the statistical isotope scrambling model was unable to explain either the SIFT or the tandem mass spectrometry data. This study shows that statistical analysis can be utilized to assess the validity of possible models in explaining experimentally observed kinetic behaviors.  相似文献   

20.
Liquid anhydrous sulfuric acid forms molecular "shells" wrapped around single-walled carbon nanotubes (SWNTs). Temperature-dependent X-ray scattering from aligned acid-swollen fibers shows that crystallization of the bulklike acid surrounding the structured shells is templated by the aligned SWNTs, while the structured shells remain partly ordered, at least for temperatures from 100 to 500 K. The (2 0 0) or ( 0 2) planes of the templated H2SO4 crystallites are parallel to the nanotube axes. This provides solid evidence for the direct protonation of SWNT since the molecules are terminated by hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号