首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heterogeneous reaction of O3 with lauric acid/oleic acid (LA/OA) mixtures and myristic acid/oleic acid (MA/OA) mixtures were studied as a function of composition, physical state, and microstructure at 298 K. Lauric acid and myristic acid are both alkanoic acids, whereas oleic acid is an alkenoic acid. Additionally, we investigated the uptake of O3 by multicomponent mixtures that closely represent the composition of meat-cooking aerosols. These measurements were performed with a rotating-wall flow-tube reactor coupled to a chemical ionization mass spectrometer. The reactive uptake coefficients (gamma) of O3 on liquid LA/OA and MA/OA solutions range from 4 x 10(-4) to 7.2 x 10(-4). The gamma values measured for solid-liquid LA/OA and MA/OA mixtures (which consist of solid LA or solid MA in equilibrium with a liquid) range from 2 x 10(-5) to 1.7 x 10(-4). These experiments show that only 7% solid by mass in the solid-liquid mixture can decrease gamma by an order of magnitude compared to the liquid mixtures. The gamma values for solid-liquid mixtures that closely represent the composition of meat-cooking aerosols range from 1.6 x 10(-5) to 6.9 x 10(-5). We found that gamma of solid-liquid mixtures depends on the microstructure of the mixtures, which in turn depends on the method of preparing the films. Furthermore, experiments employing solid-liquid mixtures show an increase in gamma with increasing film age. This can be explained either by the formation of a nonequilibrium phase followed by its relaxation to the stable phase or by Ostwald's ripening, which refers to a change in the solid microstructure due to a tendency to minimize the total surface free energy of the solid. We used the obtained gamma values to estimate OA lifetimes for polluted atmospheric conditions. For liquid solutions, the lifetimes were on the order of a few minutes. The lifetimes derived for solid-liquid mixtures are up to 75 min, significantly longer than for liquid solutions. Our study emphasizes the effect of the physical state and microstructure of multicomponent mixtures on the heterogeneous chemistry.  相似文献   

2.
The oleic acid ozonolysis in mixed oleic and myristic acid particles was studied in a flow tube reactor using single particle mass spectrometry. The change in reactivity was investigated as a function of the myristic acid concentration in these 2 micron particles. For pure oleic acid aerosol, the reactive ozone uptake coefficient, gamma, was found to be 3.4 (+/-0.3) x 10(-4) after taking secondary reactions into account. At the myristic acid crystallization point, where only 2.5% of the particle is in the solid phase, the uptake coefficient was reduced to 9.7 (+/-1.0) x 10(-5). This dramatic drop in the uptake coefficient is explained by the presence of a crystalline monolayer of myristic acid, through which ozone diffusion is reduced by several orders of magnitude, relative to liquid oleic acid. Scanning electron microscope images of the mixed particles confirm that the particle surface is crystalline when the myristic acid mole fraction exceeds 0.125. The findings of these experiments illustrate that particle morphology is important to understanding the reactivity of species in a mixed particle. The decay of myristic acid during the course of ozonolysis is explained in terms of a reaction with stabilized Criegee intermediates, which attack the acidic groups of the oleic and myristic acids with equal rate constants.  相似文献   

3.
The interaction of NO3 free radical and N2O5 with laboratory flame soot was investigated in a Knudsen flow reactor at T = 298 K equipped with beam-sampling mass spectrometry and in situ REMPI detection of NO2 and NO. Decane (C10H22) has been used as a fuel in a co-flow device for the generation of gray and black soot from a rich and a lean diffusion flame, respectively. The gas-phase reaction products of NO3 reacting with gray soot were NO, N2O5, HONO, and HNO3 with HONO being absent on black soot. The major loss of NO3 is adsorption on gray and black soot at yields of 65 and 59%, respectively, and the main gas-phase reaction product is N2O5 owing to heterogeneous recombination of NO3 with NO2 and NO according to NO3 + {C} --> NO + products. HONO was quantitatively accounted for by the interaction of NO2 with gray soot in agreement with previous work. Product N2O5 was generated through heterogeneous recombination of NO3 with excess NO2, and the small quantity of HNO3 was explained by heterogeneous hydrolysis of N2O5. The reaction products of N2O5 on both types of soot were equimolar amounts of NO and NO2, which suggest the reaction N2O5 + {C} --> N2O3(ads) + products with N2O3(ads) decomposing into NO + NO2. The initial and steady-state uptake coefficients gamma 0 and gamma ss of both NO3 and N2O5 based on the geometric surface area continuously increase with decreasing concentration at a concentration threshold for both types of soot. gamma ss of NO3 extrapolated to [NO3] --> 0 is independent of the type of soot and is 0.33 +/- 0.06 whereas gamma ss for [N2O5] --> 0 is (2.7 +/- 1.0) x 10(-2) and (5.2 +/- 0.2) x 10(-2) for gray and black soot, respectively. Above the concentration threshold of both NO3 and N2O5, gamma ss is independent of concentration with gamma ss(NO3) = 5.0 x 10(-2) and gamma ss(N2O5) = 5.0 x 10(-3). The inverse concentration dependence of gamma below the concentration threshold reveals a complex reaction mechanism for both NO3 and N2O5. The atmospheric significance of these results is briefly discussed.  相似文献   

4.
We have studied the oxidation of submicron aqueous aerosols consisting of internal mixtures of sodium oleate (oleic acid proxy), sodium dodecyl sulfate, and inorganic salts by O3, NO3/N2O5, and OH. Experiments were performed using an aerosol flow tube and a continuous flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS). The CIMS was fitted with a heated inlet for volatilization and detection of organics in the particle phase simultaneously with the gas phase. A differential mobility analyzer/condensation particle counter was used for determining aerosol size distributions. The oxidation of oleate by O3 follows Langmuir-Hinshelwood kinetics, with gammaO3 approximately 10(-5) calculated from the observed loss rate of oleate in the particle phase. The best fit Langmuir-Hinshelwood parameters are kImax=0.05+/-0.01 s-1 and KO3=4(+/-3)x10(-14) cm3molec-1. These parameters showed no dependence on the ionic composition of the aerosols or on the presence of alkyl surfactants. Several ozone oxidation products were observed to be particle-bound at ambient temperature, including nonanoic acid. We observed efficient processing of oleate by OH (0.1相似文献   

5.
The H/D exchange reaction and the rotational dynamics of heavy water (D2O) are studied at 50 degrees C in the ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), in the [D2O] range of 3-55 M. The initial H/D exchange rates are observed as 1.0 x 10(-7), 4.5 x 10(-6), 1.0 x 10(-5), 4.1 x 10(-5), 1.1 x 10(-4), and 3.7 x 10(-4) s(-1), respectively, at [D2O] of 2.8, 7.1, 8.1, 11, 15, and 25 M. The rate is very slow and less than 10(-5) s(-1) at [D2O] below approximately 7 M. It steeply increases to the order of 10(-4)s(-1) for 7 M < [D2O] < 10 M, and linearly increases with [D2O] in the more water-rich region. The intercept of the linear region at [D2O] = approximately 9 M is interpreted by considering that each chloride anion deactivates 1.6 equiv water molecules due to the strong solvation. Correspondingly, the rotational correlation time of D2O at [D2O] < 7 M is 1 order of magnitude larger than that in water-rich conditions.  相似文献   

6.
Phosphonate and phosphonic acid functionalized phosphine complexes of platinum(II) were prepared via direct reaction of the ligands with K2PtCl4 in water. Either cis or trans geometries were found depending on the nature of the ligand. The crystal structure of P(3-C6H4PO3H2)3.2H2O (6b) (triclinic, P1, a = 8.3501(6) A, b = 10.1907(6) A, c = 14.6529(14) A, alpha = 94.177(6) degrees, beta = 105.885(6) degrees, gamma = 108.784(5) degrees, Z = 2) shows a layered arrangement of the phosphonic acid. The phosphonodiamide complex cis-[PtCl2(P[4-C6H4PO[N(CH3]2]]3)2].3H2O (10) was synthesized in 89% yield and hydrolyzed to the phosphonic acid complex using dilute HCl. Aqueous phase and silica gel supported catalytic phosphonylation of phenyl triflate using palladium phosphine complexes was achieved. A molybdenum complex, Mo(CO)5[P3-C6H4PO3H2)3] (11), was synthesized in situ and grafted to an alumina surface. XPS, RBS, and AFM studies confirm the formation of a monolayer of 11 on the alumina surface.  相似文献   

7.
 采用溶胶-凝胶法制备了非晶态Fe-Al-P-O催化剂,并用IR,XRD,TEM,N2吸附及微反等技术对其组成、结构特性以及催化性能进行了表征和评价,通过IR和TPD-MS等技术着重研究了其化学吸附性能,探讨了表面催化反应的机理. 结果表明,Fe-Al-P-O催化剂是FePO4和AlPO4均匀混合形成的非晶态混合物,能够促进1,2-二氯丙烷和水反应高选择性地生成环氧丙烷,其Lewis酸位的Fe3+和Lewis碱位P=O的O2-是催化剂表面的主要活性位,能使水进行解离吸附并形成Fe-O-和P-OH 键. 1,2-二氯丙烷通过Cl-与P-OH键中的H+作用形成桥式吸附态是反应进行的关键.  相似文献   

8.
We have measured 13C NMR spectra of uranyl(V) carbonate complex in D2O solution containing 1.003 M Na2(13)CO3 at various temperatures. Two singlet signals corresponding to free and coordinated CO3(2-) were observed at 169.13 and 106.70 ppm, respectively. From the peak area ratio, the structure of the uranyl(V) carbonate complex was determined as [U(V)O2(CO3)3]5-. Furthermore, kinetic analyses of the exchange reaction of free and coordinated CO3(2-) in [U(V)O2(CO3)3]5- were carried out using 13C NMR line-broadening. As a result, the first-order rate constant at 298 K and the activation parameters for CO3(2-) exchange reaction in [U(V)O2(CO3)3]5- were evaluated as 1.13 x 10(3) s(-1) and deltaH(double dagger) = 62.0 +/- 0.7 kJ x mol(-1), deltaS(double dagger) = 22 +/- 3 J x mol(-1) x K(-1), respectively. We suggest that the exchange follows a dissociative mechanism as in the corresponding [U(VI)O2(CO3)3]4- complex.  相似文献   

9.
Transition-metal-substituted polyoxometalates (TMSP) of the type [MII(H2O)PW11O39]5- (M = Co, Zn) and [SiW9O37(CoII(H2O))3]10- have been chemically anchored to modified macroporous (400 nm pores), mesoporous (2.8 nm pores), and amorphous silica surfaces. The materials were characterized by solid-state 31P MAS NMR, UV-vis, FT-IR spectroscopy, and N2 adsorption experiments to verify cluster attachment and the structure of the TMSP on the support. On the basis of the spectroscopic evidence, clusters were attached datively to the surface, and the integrity of the [CoPW11] cluster was maintained for nonaqueous impregnation with TBA5[CoPW11]; partial degradation of the cluster occurred when it was impregnated from aqueous solution using the K5[CoPW11] salt. Both the amine surface groups and the cobalt centers in the clusters were found to be necessary to prevent cluster loss during washing or reaction processes. The catalytic activities of the supported TMSP clusters were tested by the epoxidation of cyclohexene to cyclohexene oxide in the presence of isobutyraldehyde. The percent conversion of the substrate and the amount of product formed per unit time were similar for [CoPW11] clusters on each of the three silica supports, but slightly lower than for purely homogeneous reactions. [SiW9Co3] clusters with three available cobalt centers exhibited higher catalytic activity with nearly identical performance on a silica support or in homogeneous solution.  相似文献   

10.
To probe how the aerosol substrate influences heterogeneous polycyclic aromatic hydrocarbon (PAH) oxidation, we investigated the reaction of surface-bound anthracene with gas-phase ozone on phenylsiloxane oil and azelaic acid aerosols under dry conditions in an aerosol flow tube with offline analysis of anthracene. The reaction exhibited pseudo-first-order kinetics for anthracene loss, and the pseudo-first-order rate coefficients displayed a Langmuir-Hinshelwood dependence on the gas-phase ozone concentration on both aerosol substrates. The following parameters were found: for the reaction on phenylsiloxane oil aerosols, K(O3) = (1.0 +/- 0.4) x 10(-13) cm(3) and k(I)(max) = (0.010 +/- 0.003) s(-1); for the reaction on azelaic acid aerosols, K(O3) = (2.2 +/- 0.9) x 10(-15) cm(3) and k(I)(max) = (0.057 +/- 0.009) s(-1), where K(O3) is a parameter that describes the partitioning of ozone to the surface and k(I)(max) is the maximum pseudo-first-order rate coefficient at high ozone concentrations. The K(O3) value for the reaction of surface-bound anthracene and ozone on azelaic acid aerosols is similar to the K(O3) value that we obtained in our previous study for the reaction of surface-bound benzo[a]pyrene and ozone on the same substrate. This finding supports our earlier hypothesis that the substrate influences the partitioning of ozone to the surface irrespective of the organic species (i.e., PAH) adsorbed to it. Preliminary ab initio calculations were performed to investigate whether there is a relationship between the relative binding energies of the ozone-substrate complex and the K(O3) values for the different substrates studied. A comparison between kinetic results obtained on aerosol substrates and thin films is presented.  相似文献   

11.
The rates and products of cleavage of methyl (2-chloro-4-nitrophenyl) phosphate (2) promoted by a dinuclear Zn(II) complex (3) of 1,3-bis-N,N'(1,5,9-triazacyclododecyl)propane along with 1 equiv of ethoxide were investigated in ethanol solution containing small amounts of water (8 mM or=1.6 x 10(17) times relative to the background hydroxide reaction, suggesting that complex 3 promotes the hydrolysis at least 1000 times more effectively than ethanolysis.  相似文献   

12.
Three barrel-shaped artificial molecular capsules 1-3, based on normal cucurbit[5]uril (Q[5]) and decamethylcucurbit[5]uril (Me10Q[5]), were synthesized and structurally characterized by single-crystal X-ray diffraction. Encapsulation of a chlorine anion in the cavity of a Q[5] or Me10Q[5] to form closed a molecular capsule with the coordinated metal ions or coordinated metal ions and water molecules in the crystal structures of these compounds is common. The three complexes [Pr2(C30H30N20O10)Cl3(H2O)13]3+ 3 Cl- x 5 H2O (1), [Sr2(C40H50N20O10)(H2O)4Cl]3+ 3 Cl- x 2 (HCl) 19 H2O (2) and [K(C40H50N20O10)(H2O)Cl] x [Zn(H2O)2Cl2] x [ZnCl4]2- x 2 (H3O)+ x 8 H2O (3) all crystallize as isolated molecular capsules.  相似文献   

13.
Covalent linkage of oleic acid ligated Fe3O4 spheres (9 nm) with sheetlike [H1-xCa2Nb3O10] particles (300 x 300 x 2 nm) yields, depending on conditions, submicro- or microscale stacks, which on their surfaces are decorated with magnetite nanoparticles. Due to the optical anisotropy of the sheetlike Ca2Nb3O10 building blocks and due to the superparamagnetic nature of the Fe3O4 components, the nanostructured composites exhibit magnetically controllable birefringence and light-scattering properties in solution.  相似文献   

14.
Uptake experiments of NO3 on mineral dust powder were carried out under continuous molecular flow conditions at 298 +/- 2 K using the thermal decomposition of N2O5 as NO3 source. In situ laser detection using resonance enhanced multiphoton ionization (REMPI) to specifically detect NO2 and NO in the presence of N2O5, NO3 and HNO3 was employed in addition to beam-sampling mass spectrometry. At [NO3] = (7.0 +/- 1.0) x 10(11) cm(-3) we found a steady state uptake coefficient gamma(ss) ranging from (3.4 +/- 1.6) x 10(-2) for natural limestone to (0.12 +/- 0.08) for Saharan Dust with gamma(ss) decreasing as [NO3] increased. NO3 adsorbed on mineral dust leads to uptake of NO2 in an Eley-Rideal mechanism that usually is not taken up in the absence of NO3. The disappearance of NO3 was in part accompanied by the formation of N2O5 and HNO3 in the presence of NO2. NO3 uptake performed on small amounts of Kaolinite and CaCO3 leads to formation of some N2O5 according to NO((3ads)) + NO(2(g)) --> N2O(5(ads)) --> N2O(5(g)). Slow formation of gas phase HNO3 on Kaolinite, CaCO3, Arizona Test Dust and natural limestone has also been observed and is clearly related to the presence of adsorbed water involved in the heterogeneous hydrolysis of N2O(5(ads)).  相似文献   

15.
The initial rate of the bromate-bromide reaction, BrO3- + 5Br- + 6H+ --> 3Br2 + 3H2O, has been measured at constant ionic strength, I = 3.0 mol L(-1), and at several initial concentrations of acetate, bromate, bromide, and perchloric acid. The reaction was followed at the Br2/Br3- isosbestic point (lambda = 446 nm) by the stopped-flow technique. A very complex behavior was found such that the results could be fitted only by a six term rate law, nu = k1[BrO3-][Br-][H+]2 + k2[BrO3-][Br-]2[H+]2 + k3[BrO3-][H+]2[acetate]2 + k4[BrO3-][Br-]2[H+]2[acetate] + k5[BrO3-][Br-][H+]3[acetate]2 + k6[BrO3-][Br-][H+]2[acetate], where k1 = 4.12 L3 mol(-3) s(-1), k2 = 0.810 L4 mol(-4) s(-1), k3 = 2.80 x 10(3) L4 mol(-4) s(-1), k4 = 278 L5 mol(-5) s(-1), k5 = 5.45 x 10(7) L6 mol(-6) s(-1), and k6 = 850 L4 mol(-4) s(-1). A mechanism, based on elementary steps, is proposed to explain each term of the rate law. This mechanism considers that when acetate binds to bromate it facilitates its second protonation.  相似文献   

16.
Rate constants for the reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], triethyl phosphate [TEP, (C2H5O)3PO] and 1,3,5-trimethylbenzene have been measured over the temperature range 278-348 K at atmospheric pressure of air using a relative rate method. alpha-Pinene (for DEMP, DEEP, TEP and 1,3,5-trimethylbenzene) and di-n-butyl ether (for DMMP and DMEP) were used as the reference compounds, and rate constants for the reaction of OH radicals with di-n-butyl ether were also measured over the same temperature range using alpha-pinene and n-decane as the reference compounds. The Arrhenius expressions obtained for these OH radical reactions (in cm3 molecule(-1) s(-1) units) are 8.00 x 10(-14)e(1470+/-132)/T for DMMP (296-348 K), 9.76 x 10(-14)e(1520+/-14)/T for DMEP (296-348 K), 4.20 x 10(-13)e(1456+/-227)/T for DEMP (296-348 K), 6.46 x 10(-13)e(1339+/-376)/T for DEEP (296-348 K), 4.29 x 10(-13)e(1428+/-219)/T for TEP (296-347 K), and 4.40 x 10(-12)e(738+/-176)/T for 1,3,5-trimethylbenzene (278-347 K), where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the rate constants for the reference compounds. The measured rate constants for di-n-butyl ether are in good agreement with literature data over the temperature range studied (278-348 K).  相似文献   

17.
We developed an FIA system equipped with a chemiluminescence detector using a mixed chemiluminescence reagent of luminol and 1,10-phenanthroline for the detection of metal ions and metal complexes. The carrier, mixed chemiluminescence reagent comprising luminol, 1,10-phenanthroline, and cethyltrimethylammonium bromide, and H2O2 solutions were fed by corresponding pumps at a definite flow rate. Sample solutions dissolving hematin, [Co(NH3)4(H2O)2]2(SO4)3, CuSO4, NiCl2, K3[Fe(CN)6], and K4[Fe(CN)6] were analyzed as models by the means of the present FIA system. Solutions of hematin, [Co(NH3)4(H2O)2]2(SO4)3, CuSO4, and NiCl2 were detected as positive peaks, as usual. The order of the catalytic activity of these samples for the present chemiluminescence reaction using the mixed chemiluminescence reagent was [Co(NH3)4(H2O)2]2(SO4)3 > hematin > CuSO4 > NiCl2. On the other hand, sample solutions of K3[Fe(CN)6] and K4[Fe(CN)6] were detected as negative peaks and were determined over the ranges of 1 x 10(-8) - 1 x 10(-6) M with a detection limit of 1 x 10(-8) M and 2 x 10(-8) - 4 x 10(-6) M with a detection limit of 2 x 10(-8) M, respectively. Their negative peaks were observed reproducibly with a relative standard deviation of 2 - 5%.  相似文献   

18.
The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.  相似文献   

19.
The reaction of N(2)O(5) on sea salt aerosol is a sink for atmospheric nitrogen oxides and a source of the Cl radical. We present room-temperature measurements of the N(2)O(5) loss rate on submicron artificial seawater (ASW) aerosol, performed with an entrained aerosol flow tube coupled to a chemical ionization mass spectrometer, as a function of aerosol phase (aqueous or partially crystalline), liquid water content, and size. We also present an analysis of the product growth kinetics showing that ClNO(2) is produced at a rate equal to N(2)O(5) loss, with an estimated lower limit yield of 50% at 50% relative humidity (RH). The reaction probability for N(2)O(5), gamma(N(2)(O)(5)), depends strongly on the particle phase, being 0.005 +/- 0.004 on partially crystalline ASW aerosol at 30% RH and 0.03 +/- 0.008 on aqueous ASW aerosol at 65% RH. At 50% RH, N(2)O(5) loss is relatively insensitive to particle size for radii greater than 100 nm, and gamma(N(2)(O)(5)) displays a statistically insignificant increase from 0.022 to approximately 0.03 for aqueous ASW aerosol over the RH range of 43-70%. We find that the presence of millimolar levels of hexanoic acid in the aerosol bulk decreases the gamma(N(2)(O)(5)) at 70% RH by a factor of 3-4 from approximately 0.025 to 0.008 +/- 0.004. This reduction is likely due to the partitioning of hexanoic acid to the gas-aerosol interface at a surface coverage that we estimate to be equivalent to a monolayer. This result is the first evidence that a monolayer coating of aqueous organic surfactant can slow the reactive uptake of atmospheric trace gases to aerosol.  相似文献   

20.
Rate constants for the gas-phase reactions of OH radicals with dimethyl phosphonate [DMHP; (CH3O)2P(O)H] were measured over the temperature range of 278-351 K at atmospheric pressure of air using a relative rate method with 4-methyl-2-pentanone as the reference compound. The Arrhenius expression obtained was 1.01 x 10(-12) e((474 +/- 159)/T) cm(3) molecule(-1) s(-1), where the indicated error is two least-squares standard deviations and does not include uncertainties in the rate constants for the reference compound. Rate constants for the gas-phase reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], and triethyl phosphate [TEP, (C2H5O)3PO] were also measured at 278 and/or 283 K for comparison with a previous study (Aschmann, S. M.; Long, W. D.; Atkinson, R. J. Phys. Chem. A, 2006, 110, 7393). With the experimental procedures employed, experiments conducted at temperatures below the dew point where a water film was present on the outside of the Teflon reaction chamber resulted in measured rate constants which were significantly higher than those expected from the extrapolation of rate data obtained at temperatures (283-348 K) above the dew point. Using rate constants measured at > or = 283 K, the resulting Arrhenius expressions (in cm(3) molecule(-1) s(-1) units) are 6.25 x 10(-14) e((1538 +/- 112)/T) for DMMP (283-348 K), 9.03 x 10(-14) e((1539 +/- 27)/T) for DMEP (283-348 K), 4.35 x 10(-13) e((1444 +/- 148)/T) for DEMP (283-348 K), 4.08 x 10(-13) e((1485 +/- 328)/T) for DEEP (283-348 K), and 4.07 x 10(-13) e((1448 +/- 145)/T) for TEP (283-347 K), where the indicated errors are as above. Aerosol formation at 296 +/- 2 K from the reactions of OH radicals with these organophosphorus compounds was relatively minor, with aerosol yields of < or = 8% in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号