共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles. Typical particles are selected representing three kinds of particle motion: a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales. 相似文献
2.
《中国颗粒学报》2008,6(6)
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles.Typical particles are selected representing three kinds of particle motion:a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales. 相似文献
3.
The mechanical behavior of granular materials depends much on the shape of the constituent particles. Therefore appropriate modeling of particle, or grain, shape is quite important. This study employed the method of direct modeling of grain shape (Matsushima & Saomto, 2002), in which, the real shape of a grain is modeled by combining arbitrary number of overlapping circular elements which are connected to each other in a rigid way. Then, accordingly, a discrete-element program is used to simulate the assembly of grains. In order to measure the effects of grain shape on mechanical properties of assembly of grains, three types of grains—high angular grains, medium angular grains and round grains are considered where several biaxial tests are conducted on assemblies with different grain types. The results show that the angularity of grains greatly affects the behavior of granular soil. 相似文献
4.
Seksan Suttisong Phadungsak Rattanadecho 《Experimental Thermal and Fluid Science》2011,35(8):1530-1534
In the present study an experimental investigation of heat transport and water infiltration in granular packed bed (unsaturated porous media) due to supplied water flux is carried out. The study is focus on the one-dimensional flow in a vertical granular packed bed column assuming local thermal equilibrium between water and particles at any specific space. This experimental study described the dynamics of heat transport and water infiltration in various testing condition. Experimentally, the influences of particle sizes, supplied water flux and supplied water temperature on heat transport and water infiltration during unsaturated flow are clarified in details. The results showed that the granular packed bed with larger particle size results in faster infiltration rate and form a wider infiltration depth. Furthermore, the increase of the supplied water flux and supplied water temperature corresponds to faster infiltration rate, but the results not linearly related to the interference between the heat transport and hydrodynamics characteristics in granular packed bed. 相似文献
5.
Dispersed water droplets are often seen in environmental air flows in rain, cloud, mist, sea spray and so on. It is therefore of great importance to precisely estimate heat transfer between water droplets and atmospheric air in developing a reliable climate model. The purpose of this study is to fabricate the measurement system for the temperature of a small water droplet in air flow under the controlled relative humidity condition and to investigate the effect of relative humidity on heat transfer across the surface of an evaporating water droplet in air flow. The results show that the droplet temperature decreases in the low-relative-humidity condition, whereas it increases in the high-relative-humidity condition. Nusselt number on the droplet surface is not affected by the relative humidity. 相似文献
6.
The effectiveness of internal heating for enhancing the drying of molded ceramics is evaluated by both modeling and experiments.
In the theoretical analysis, three dimensional drying-induced strain–stress are modeled, and the numerical solutions show
that the internal heating generates lower internal stress than continuous convective heating or intermittent convective heating.
Microwave drying is examined experimentally to study the effect of internal heating on the drying behavior of a wet sample
of a kaolin slab. The drying behavior is compared among three modes: microwave heating, hot air heating and radiation heating.
The transient behavior of temperatures in microwave drying is quite different from conventional drying by external heating.
In particular, the temperature of the slab drops once in the progress of drying. This phenomenon cannot be predicted adequately
by a simple model of one-dimensional heat conduction and moisture diffusion accompanied with an internal heat generation rate
given as a linear function of the moisture content. It should be noted that the temperature behavior takes place due to the
combined interactions with internal evaporation of moisture by rise in internal vapor pressure and shift of impedance or interference
in the applicator. Microwave heating with a constant power above 100 W results in sample breakage due to the internal vapor
pressure. However, if the power is dynamically controlled so as to maintain the temperature less than the boiling point of
water, the drying succeeds without any crack generation until completion with a significantly faster drying rate than drying
in convective heating or in the oven. 相似文献
7.
Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet 总被引:1,自引:0,他引:1
David J. Sailor Daniel J. Rohli Qianli Fu 《International Journal of Heat and Fluid Flow》1999,20(6):529-580
A series of experiments has been conducted in which a pulsed air jet is impinged upon a heated surface for the purpose of enhancing heat transfer relative to the corresponding steady air jet. Traditional variables such as jet to plate spacing, Reynolds number, and pulse frequency have been investigated. One additional flow variable – the duty cycle – representing the ratio of pulse cycle on-time to total cycle time is introduced and shown to be significant in determining the level of heat transfer enhancement. Specifically, heat transfer enhancement exceeding 50% is shown for a variety of operating conditions. In each case, the duty cycle producing the best heat transfer is shown to depend upon each of the other flow parameters. Recommendations are made for further experimentation into optimizing the duty cycle parameter for any particular application. 相似文献
8.
We extended the standard approach to countercurrent gas–solid flow in vertical vessels by explicitly coupling the gas flow and the rheology of the moving bed of granular solids, modelled as a continuum, pseudo-fluid. The method aims at quantitatively accounting for the presence of shear in the granular material that induces changes in local porosity, affecting the gas flow pattern through the solids. Results are presented for the vertical channel configuration, discussing the gas maldistribution both through global and specific indexes, highlighting the effect of the relevant parameters such as solids and gas flowrate, channel width, and wall friction. Non-uniform gas flow distribution resulting from uneven bed porosity is also discussed in terms of gas residence time distribution (RTD). The theoretical RTD in a vessel of constant porosity and Literature data obtained in actual moving beds are qualitatively compared to our results, supporting the relevance under given circumstances of the coupling between gas and solids flow. 相似文献
9.
Dmitri Neshumayev Arvo Ots Jaan Laid Toomas Tiikma 《Experimental Thermal and Fluid Science》2004,28(8):4343-886
This experimental research was focused on the investigation of the heat transfer augmentation by various turbulator inserts in gas-heated channels. The work was conducted directly in a convective part of a two fire-tube boiler. The flue ducts were positioned vertically and horizontally for various design applications. Twisted-tape insert (with the twist ratio y=4.12), the straight-tape insert, and the combined turbulator insert (the internal twisted tape with the twist ratio of 180° y=2.16 and an external tape, which spirally winded on an internal tape, with longitudinal pitch H360°=110 mm and the relative height of a tape (rib) e/D0=0.098;0.2) were investigated. The working fluids were the combustion products of light oil fuel and wood pellets. In addition, the experiments were conducted in the two fire-tube boiler without any inserts. Despite of relatively large data scattering obtained in these experiments some qualitative and quantitative conclusions were drawn. 相似文献
10.
Ala Hasan 《Heat and Mass Transfer》2005,41(8):724-733
The thermal-hydraulic performance of five oval tubes is experimentally investigated and compared with that for a circular tube in a cross-flow of air. The range of Reynolds numbers ReD is approximately between 1,000 and 11,000. The nominal axis ratios R (major axis/minor axis) for three of the investigated oval tubes are 2, 3, and 4. Two other configurations of oval tubes are also tested, an oval tube R=3 with two wires soldered on its upper and lower top positions, and a cut-oval tube. The performance of the tubes is corrected for the effects of area blockage and turbulence intensity. The measurement results show that the mean Nusselt numbers NuD for the oval tubes are close to that for the circular tube for ReD<4,000. For a higher ReD, the NuD for the oval tubes is lower than that for the circular tube and it decreases with the increase in the axis ratio R. The drag coefficients Cd for the tubes are measured and the combined thermal-hydraulic performance is indicated by the ratio NuD/Cd, which shows a better combined performance for the oval tubes. 相似文献
11.
Mehrdad Massoudi 《International Journal of Non》2005,40(4):507-514
In this paper, we study the flow of a linearly viscous fluid and a granular solid, consisting of many particles, situated between two parallel plates rotating about different axes. Flow in orthogonal rheometers has been studied for many viscoelastic fluids so that their rheological properties can be measured. The mixture is modeled using the theory of interacting continua, and constitutive relations for the fluid phase, the granular phase, and the interaction forces are provided. For a very special case, an analytical solution to the equations of motion is also provided. 相似文献
12.
Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles
in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force
exerted on them in the vicinity of the wall. Analytic solution shows that, when the direction of the mean flow is horizontal,
the probability density functionp (y, t) for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component
of the lift force precisely balances particle gravity. Interpretation of experimental observations is presented using this
theory. 相似文献
13.
In this paper the problem of laminar, transient, two-dimensional free convective heat transfer from the surface of a horizontal elliptic tube is considered. The tube, whose surface is suddenly subjected to uniform heat flux, is placed in a quiescent Boussinesq Newtonian fluid with its major axis horizontal. The details of both flow and thermal fields are obtained by solving the full governing Navier–Stokes and energy equations. These equations, expressed in terms of stream function, vorticity and temperature, are numerically solved using an implicit spectral finite difference procedure. The parameters involved are the modified Rayleigh number, Prandtl number and axis-ratio. The investigation covers a Rayleigh number range up to 107. The minor–major axis ratio of elliptic cylinder ranges between 0.05 and 0.998 and Prandtl number ranges between 0.1 and 10. The effects of these parameters on the surface temperature distribution and heat transfer coefficients are determined and the different aspects of the results are discussed for some selected cases. 相似文献
14.
Xin-Zhuang Wu Jun-Jie Yan Shu-Feng Shao Yan Cao Ji-Ping Liu 《International Journal of Multiphase Flow》2007,33(12):1296-1307
The condensation of supersonic steam jet submerged in the quiescent subcooled water was investigated experimentally. The results indicated that the shape of steam plume was controlled by the steam exit pressure and water temperature. Six different shapes of steam plume were observed under the present test conditions. Their distribution as a function of the steam exit pressures and water temperatures was given. As the steam mass velocity and water temperature increase, the measured maximum expansion ratio and dimensionless penetration length of steam plume were in the ranges of 1.08–1.95 and 3.05–13.15, respectively. The average heat transfer coefficient of supersonic steam jet condensation was found to be in the range of 0.63–3.44 MW/m2K. An analytical model of steam plume was found and the correlations to predict the maximum expansion ratio, dimensionless penetration length and average heat transfer coefficient were also investigated. 相似文献
15.
Artificial roughness in the form of ribs is a convenient method for enhancing thermal performance of solar air heaters. This paper presents the experimental investigation of heat transfer and friction factor characteristics of a rectangular duct roughened with W-shaped ribs arranged at an inclination with respect to the flow direction on its underside on one broad wall. W ribs have been tested both pointing in downstream W-down and upstream W-up to the flow. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions. The duct has a width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) of 0.03375 and angle of attack of flow (α) of 30-75°. The air flow rate corresponds to Reynolds number between 2300-14,000. The heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition and thermo-hydraulic performance has been investigated. Thermo-hydraulic performance comparison for different angle of attack of flow shows that W-down arrangement with angle of attack of flow as 60° gives best thermo-hydraulic performance. In addition heat transfer and friction factor correlations have been developed. 相似文献
16.
Carlo Bartoli 《Experimental Thermal and Fluid Science》2011,35(2):283-290
This paper aims to determine the heat transfer enhancement in natural convection between a downward-facing inclined wall, heated by Joule effect, and air in the presence of small air pulsating expired jets, in conditions of medium temperature difference between wall and air, namely 40 K. Experimental measurements have been taken both with and without pulsating expired jets. The wall is kept in condition of uniform temperature. The expired jets blow out perpendicularly from the wall surface. An infrared thermo-camera was used to check the wall temperature uniformity. Hot-wire anemometer and visualization with smoke were used to find information on the air velocity field.The wall inclination angle which maximizes the convective heat exchange near the leading edge has been investigated too. 相似文献
17.
The temperature distribution in particle-laden turbulent flow, in a flume, was investigated both by DNS and experimentally. Simulations were performed at Re=171 and Pr=5.4 in order to study the interaction between the particle motion and flow turbulence. Two-way coupling was used to obtain various turbulence statistics, the grid resolution was sufficiently fine to resolve all essential turbulent scales. The effect of particle diameter on momentum, heat transfer and particle deposition was considered. The details of particle-turbulence interaction depend on the particle Stokes number and the particle Reynolds number.
The spatial structures of instantaneous flow and temperature fields were visualized. Low frequency small oscillations of deposited particles were observed. It was found that these small deviations from the initial position, caused strong changes in the instantaneous temperature field near the particle.
The experiments provided details of the temperature field on the heated wall close to the particle. In the front of the particle, a sharp increase in heat transfer coefficient was observed. The experimental results agree well with the computational predictions. 相似文献
18.
Jos Maria Saiz Jabardo Enio Pedone Bandarra Filho 《Experimental Thermal and Fluid Science》2000,23(3-4):93-104
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%. 相似文献
19.
By using unique experimental techniques and carefully constructed experimental apparatus, the characteristics of flow boiling of water in microscale were investigated using a single horizontal rectangular microchannel. A polydimethylsiloxane rectangular microchannel (Dh = 103.5 and 133 μm) was fabricated by using the replica molding technique, a kind of soft lithography. A piecewise serpentine platinum microheater array on a Pyrex substrate was fabricated with the surface micromachining MEMS technique. Real time flow visualization of the phase change phenomena inside the microchannel was performed using a high speed CCD camera with microscope. The experimental local boiling heat transfer coefficients were studied, and single bubble inception, growth, and departure, as well as elongated bubble behavior were analyzed to elucidate the microscale heat transfer mechanisms. Tests were performed for mass fluxes of 77.5, 154.9, and 309.8 kg/m2 s and heat fluxes of 180–500 kW/m2. The effects of mass flux, heat flux, and vapor qualities on flow boiling heat transfer in a microchannel were studied. 相似文献
20.
Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process 总被引:5,自引:0,他引:5
A technique to determine the thermal boundary conditions existing during the solidification of metallic alloys in the investment casting process is presented. Quantitative information about these conditions is needed so that numerical models of heat transfer in this process produce accurate results. In particular, the variation of the boundary conditions both spatially and temporally must be known. The method used involves the application of a new inverse heat conduction method to thermal data recorded during laboratory experiments of aluminium alloy solidification in investment casting shell moulds. The resultant heat transfer coefficient for the alloy/mould interface is calculated. An experimental programme to determine requisite mould thermal properties was also undertaken. It was observed that there is significant variation of the alloy/mould heat transfer coefficient during solidification. It is found to be highly dependent on the alloy type and on the vertical position below the initial free surface of the liquid metal. The aluminium casting alloys used in this study were 413, A356, 319 (Aluminum Association designations), and commercially pure aluminium. These alloys have significantly different freezing ranges. In particular, it was found that alloys with a high freezing range solidify with rates of heat transfer to the mould which are very sensitive to metallostatic head. 相似文献