首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generation 0 through 5 polyamidoamine (PAMAM) dendrimers with three different types of groups connecting to hydrophobic C12 tails and one type of group connecting to C18 tails were synthesized and studied as monolayers at the air-water interface with a Langmuir trough. The molecular areas were significantly influenced by the size and the type of connecting group. Higher-generation (e.g., G4 and G5) amphiphilic PAMAMs with amide connecting groups were more responsive to changes in compression rate and subphase temperature and less stable than the corresponding opened epoxide- or ester-connected counterparts. Intramolecular (and possibly also intermolecular) attractive hydrogen-bond interactions between the amide connectors are proposed as the reason for this behavior.  相似文献   

2.
A trisilanol derivative of polyhedral oligomeric silsesquioxane (POSS), trisilanolisobutyl-POSS, has recently been reported to form stable monolayers at the air/water interface. This paper explores the mono- and multilayer properties of another POSS derivative, trisilanolcyclohexyl-POSS, with pi-A isotherm and Brewster angle microscopy measurements. Results show that with continuously increasing surface concentration via symmetrical compression, trisilanolcyclohexyl-POSS amphiphiles at the air/water interface undergo a series of phase transitions from traditional Langmuir monolayers (one-POSS-molecule thick) to unique rodlike hydrophobic aggregates in multilayer films (approximately eight-POSS-molecules thick) that are dramatically different from "collapsed" morphologies seen in other systems. Stable and hydrophobic rodlike structure formation on water is presumably due to trisilanolcyclohexyl-POSS' unique molecular structure and strong tendency to form intermolecular hydrogen bonds in the solid state. This result is consistent with existing POSS/polymer composite research, which shows that POSS molecules tend to aggregate and crystallize into lamellar nanocrystals.  相似文献   

3.
4.
A series of star-like nonionic surfactants (with two hydrophobic and two hydrophilic chains) with different lengths of hydrophilic and hydrophobic arms were synthesised on the basis of pyromellitic acid dianhydride. The hydrophilic arms were formed by polyoxyethylene and hydrophobic ones either by perfluoro- or by alkyl chains. The adsorption monolayers (Gibbs monolayers) were studied by surface pressure (π) measurements as a function of time for different surfactant concentrations. For the spread monolayers (Langmuir monolayers), the measurements of the surface pressure (π) versus the molecular area (A) as well as the relaxation measurements of the area (A) as a function of time at constant surface pressure were performed. The comparison between the characteristic parameters of two types of monolayers was made in order to understand the effect of the preparation conditions on the structure of these monolayers.It was found that decreasing the fluoroalkyl chain length induced a systematical decrease in the stability of Langmuir monolayers, which is manifested as the Marangoni-Gibbs viscoelasticity of the monolayers. For the surfactants, which have a large number of oxyethylene groups, adsorption at the air/water interface from the bulk solution required extremely long times to reach equilibrium due to the diffusion from the solution and to the conformational rearrangements at the interface. The observation of a hysteresis in the compression/decompression curves for these compounds is explained by the presence of the residual organic solvent molecules absorbed by oxyethylenic chains. A novel model describing the kinetics of desorption or rearrangement of molecules during the lateral compression was suggested, allowing the estimation of both characteristic time of this process and areas per molecule at the equilibrium from the relaxation curves A(t).  相似文献   

5.
Using the Langmuir technique, we have studied the properties at the air/water interface and the interaction of the hepatitis G virus synthetic peptide E1(53-66) and its palmitoyl derivative with membrane phospholipids. These phospholipids had different characteristics referring to the net charge and saturation of the acyl chain. The palmitoyl derivative was more stable at the air/water interface and in the kinetic at constant area measurements showed higher incorporation to the monolayer. The interaction was higher for saturated phospholipids and those with a negative net charge. When the peptides were in the subphase, they produced changes in the miscibility of mixed monolayers composed of DPPC/DPPG or DOPC/DOPG. It can be deduced from the results obtained that electrostatic interactions play a major role, but when the peptide is derivatized with the palmitoyl chain, hydrophobic interactions are added to the former ones. The interaction is also influenced by the saturation of the acyl chain.  相似文献   

6.
We studied interfacial properties of a series of methyl and ethyl esters of enantioenriched syn-2,3-dihydroxy fatty acids with different chain lengths at the air-water interface, using a Langmuir type film balance and a Brewster angle microscope (BAM). After analyzing their surface pressure (Pi)-area (A) isotherms, we inferred that these molecules existed as an E conformation in the liquid-expanded (LE) phase of monolayers, and the E conformation of molecules changed into a Z conformation during the LE-LC transition in a monolayer. BAM images evidenced the formation of elongated LC aggregates. This is possibly induced by the intermolecular hydrogen bonds, leading to the anisotropic growth of LC domains, on the basis of the FT-IR spectroscopy data. The enthalpy change of the LE-LC phase transition is considered to result from the three types of intermolecular interactions at the air-water interface during compression of these amphiphiles. These findings are discussed in terms of various physical factors that influenced intermolecular interactions and macroscopic aggregations of these amphiphiles.  相似文献   

7.
Gibbs or Langmuir monolayers formed at the soft air/liquid interface are easy to handle and versatile model systems for material and life sciences. The phase state of the monolayers can be modified by lateral compression of the film while the layer structural changes are monitored by highly sensitive surface characterization techniques. The use of high brilliant synchrotron light sources for X-ray experiments is essential for the monolayer research. The present review highlights the recent achievements recorded in the monolayer field with a special emphasis on different synchrotron based X-ray characterizing methods as: grazing incidence X-ray diffraction, X-ray reflectivity and total reflection X-ray fluorescence. Some examples of single-chain surfactants, special sugar lipids, and semifluorinated compounds are given. Additionally, thin layers formed by peptides, polymers or nanoparticles are highlighted.  相似文献   

8.
The dipole potential, affecting the structure, functions, and interactions of biomembranes, lipid bilayers, and Langmuir monolayers, is positive toward the hydrocarbon moieties. We show that uncharged Langmuir monolayers of docosyl trifluoroethyl ether (DFEE) exhibit large negative dipole potentials, while the nonfluorinated docosyl ethyl ether (DEE) forms films with positive dipole potentials. Comparison of the Delta V values for these ethers with those of the previously studied(37-39) monolayers of trifluoroethyl ester (TFEB) and ethyl ester of behenic acid (EB) shows that the reversal of the sign of Delta V causes the same change Delta(Delta V) = -706 +/- 16 mV due to fluorination of heads. The Delta V values of both TFEB and EB films differ by -122 +/- 16 mV from those of DFEE and DEE monolayers, respectively, with the same density. Such quantitative coincidence points to a common mechanism of reversal of the sign of the dipole potential for the ether and ester films despite the different structure of their heads. The mechanical properties and phase behaviors of these monolayers show that both fluorinated heads are less hydrated, suggesting that the change of the sign of Delta V could, at least partially, be related to different hydration water structure. The same negative contribution of the carbonyl bond in both TFEB and EB films contrasts with the generally accepted positive contribution of the C(delta+)=O(delta-) bond in condensed Langmuir monolayers of fatty acids, their alcohol esters, glycerides, and phospholipids but concurs with the theoretical analysis of Delta V of stearic acid monolayers. Both results question the literature values of the molecular dipole moments of these substances calculated via summation of bonds and atomic group contributions. Mixed monolayers of DFEE and DEE show smooth monotonic variation of Delta V from +450 to -235 mV, indicating a way for adjustment of the sign and magnitude of the dipole potential at the membrane-water boundary and regulation of such membrane behaviors as binding and translocation rate of hydrophobic ions and ion-carriers, adsorption and penetration of amphiphilic peptides, polarization of hydration water, and short-range repulsion. The interaction of the hydrophobic ions tetraphenylboron TPhB- and tetraphenylphosphonium TPhP+ with DFEE and DEE monolayers qualitatively follows the theory of binding of such ions to lipid bilayers, but the shifts Delta(Delta V) from the values obtained on water are much smaller than those for DPPC monolayers. This difference seems to be due to the solid (polycrystalline) character of the DFEE and DEE films that hampers the penetration of TPhB- and TPhP+ in the monolayers and reduces the attractive interaction with the hydrophobic moiety. This conclusion orients the future synthesis of amphiphiles with fluorinated heads to those which could form liquid-expanded Langmuir monolayers.  相似文献   

9.
This study focuses on the modular synthesis of a new class of nonionic dendritic amphiphiles and their behavior at the water-air interface. Our approach is based on a modular architecture consisting of two different generations of hydrophilic polyol dendrons connected to a two-chain hydrophobic block. Caused by different polarities of polyol and aliphatic groups, the molecules are surface-active and, by analogy to phospholipids, can form well-organized Langmuir monolayers at the water surface. The self-association process and phase behavior of these molecules with two different headgroup sizes were investigated by means of surface pressure and surface potential area isotherms by surface shear rheology and Brewster angle microscopy. With these techniques, we were able to observe marked differences in the phase behavior of the two molecular generations.  相似文献   

10.
A trisilanol polyhedral oligomeric silsesquioxane (POSS), trisilanolcyclohexyl-POSS (TCyP), has recently been reported to undergo a series of phase transitions from traditional Langmuir monolayers to unique rodlike hydrophobic aggregates in multilayer films that are different from "collapsed" morphologies seen in other systems at the air/water interface. This paper focuses on the phase transitions and morphology of films varying in average thickness from monolayers to trilayers and the corresponding viscoelastic properties of trisilanolcyclohexyl-POSS molecules at the air/water interface by means of surface pressure-area per molecule (Pi-A) isotherms, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) measurements. The morphology studies by BAM reveal that the TCyP monolayer can collapse into different 3D structures by homogeneous or heterogeneous nucleation mechanisms. For homogeneous nucleation, analysis by Vollhardt et al.'s nucleation and growth model reveals that TCyP collapse is consistent with instantaneous nucleation with hemispherical edge growth at Pi = 3.7 mN.m(-1). Both surface storage (Gs') and loss (Gs") moduli obtained by ISR reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms: (A) A viscous liquidlike "monolayer"; (B) a "biphasic regime"between a liquidlike viscous monolayer and a more rigid trilayer; and (C) an elastic solidlike "trilayer". These observations provide interesting insights into collapse mechanisms and structures in Langmuir films.  相似文献   

11.
The design of new molecules with directed interactions to functional molecules as complementary building blocks is one of the main goals of supramolecular chemistry. A new p-tert-butylcalix[6]arene monosubstituted derivative bearing only one alkyl chain with an acid group (C6A3C) has been synthesized. The C6A3C has been successfully used for building Langmuir monolayers at the air-water interface. The C6A3C molecule adopts a flatlike orientation with respect to the air-water interface. The molecular structure gives the molecule amphiphilic character, while allowing the control of both the dissociation degree and the molecular conformation at the air-water interface. The C63AC has been combined with pristine fullerene (C60) to form the supramolecular complex C6A3C:C60 in 2:1 molar ratio (CFC). The CFC complex retains the ability of C6A3C to form Langmuir monolayers at the air/water interface. The interfacial molecular arrangement of the CFC complex has been convincingly described by in situ UV-vis reflection spectroscopy and synchrotron X-ray reflectivity measurements. Computer simulations complement the experimental data, confirming a perpendicular orientation of the calixarene units of CFC with respect to the air-water interface. This orientation is stabilized by the formation of intermolecular H-bonds. The interfacial monolayer of the CFC supramolecular complex is proposed as a useful model for the well-defined self-assembly of recognition and functional building blocks.  相似文献   

12.
提出了一种原位测量气/液界面Langmuir单分子膜拉曼光谱的新方法, 即利用SERS技术, 通过降低亚相的方法来获得气/液界面Langmuir单分子膜的原位拉曼光谱. 利用这种方法, 用原位拉曼光谱测量系统得到了信噪比较好的十八胺及二棕榈酰磷脂酰胆碱单分子膜的拉曼光谱, 在分子水平上获取了单分子膜中的结构信息.  相似文献   

13.
The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.  相似文献   

14.
Phospholipid monolayers adsorbed at an air-water interface are model cell membranes and have been used in this work to study interactions with blood-clotting proteins. Factor I (non-membrane binding) was used as a control protein, and its association with L-alpha-dipalmitoylphosphatidylcholine Langmuir monolayers was compared to factor VII, a membrane-binding protein. Fluorescence micrographs indicated that factor I penetration of the lipid monolayers in the phase transition region occurred extensively, causing condensation of the lipid film. The association of factor I with phospholipid monolayers was deemed nonspecific. Factor VII was shown to associate with the periphery of lipid domains in the absence of calcium ions, causing flattening of domain edges. In the presence of calcium, factor VII induced expansion of the lipid monolayer. This effect is a specific interaction attributed to exposure of hydrophobic residues upon calcium binding, followed by protein association with lipid hydrocarbon chains. Copyright 2001 Academic Press.  相似文献   

15.
In this paper, the penetration behaviour of the alkylbetainate chloride surfactants (C(n)BC, n=10-16) into lipid monolayers of dipalmitoylphosphatidylserine (DPPS), dipalmitoylphosphatidic acid (DPPA), dipalmitoylphosphatidylethanolamine (DPPE), palmitoyoleoylphosphatidylcholine (POPC) and cholesterol (CHOL) is investigated using the Langmuir trough technique. The penetration of C(n)BC is followed by measurement of the surface pressure increase (Δπ) at a constant surface area after the injection of C(n)BC into the aqueous phase, underneath the lipid monolayer previously spread at the air-water interface at 25°C and at different initial surface pressures (π(i)). The influence of both the lipid head group and the surfactant hydrocarbon chain length on the effectiveness of C(n)BC penetration into these monolayers is discussed. The results have shown that C(n)BC adsorb at the air-water interface giving evidence of their surface-active properties. The adsorption kinetics of C16BC into different lipid monolayers are lipid head charge and lipid head volume-dependent. The magnitude of the surface pressure increase (Δπ) arises in the following order: DPPA>DPPS?CHOL≈DPPE>POPC. C(n)BC penetration into negatively-charged (DPPS and DPPA) monolayers does not seem to depend on surfactant alkyl-chain length compared to uncharged (CHOL) and zwitterionic (DPPE and POPC) monolayers for which Δπ increases with a larger alkyl-chain length. Electrostatic interactions are mainly involved in the affinity of C(n)BC with monolayers but the hydrophobic effect plays also a role.  相似文献   

16.
The surface behavior of monoacylated beta-cyclodextrins, with hydrocarbon chains of 16, 14, and 10 carbons, has been assessed by the measurement of the surface pressure, surface (dipole) potential, optical reflectivity, and surface topography in monolayers at the air-water interface. For all the derivatives studied, the intermolecular organization adopted along compression-decompression isotherms reveals a rich variety of packing states which imply profound reorganization of the hydrophobic and hydrophilic moieties of the beta-cyclodextrin derivatives in the film, depending on the lateral surface pressure. The intermolecular arrangements are consistent with the adoption of a different and defined orientation of the cyclic oligosaccharide unit, relative to the interfacial plane and the aqueous subphase. This is different from the behavior of the per-substituted derivatives, and none of the changes exhibited by the monosubstituted forms are consistent with the oligosaccharide ring remaining in a fixed orientation along the interface when the surface pressure is varied.  相似文献   

17.
Langmuir monolayers (monolayers of insoluble molecules formed at the surface of water), and associated Langmuir-Blodgett/Schaefer monolayers prepared by transfer of Langmuir films to the surfaces of solids, are widely used in studies aimed at understanding the physicochemical properties of biological and synthetic molecules at interfaces. In this article, we report a general and facile procedure that permits transfer of Langmuir monolayers from the surface of water onto microscopic and planar interfaces between oil and aqueous phases. In these experiments, a metallic grid supported on a hydrophobic solid is used to form oil films with thicknesses of 20 mum and interfacial areas of 280 mum x 280 mum. Passage of the supported oil films through a Langmuir monolayer is shown to lead to quantitative transfer of insoluble amphiphiles onto the oil-water interfaces. The amphiphile-decorated oil-water interfaces hosted within the metallic grids (i) are approximately planar, (ii) are sufficiently robust mechanically so as to permit further characterization of the interfaces outside of the Langmuir trough, (iii) can be prepared with prescribed and well-defined densities of amphiphiles, and (iv) require only approximately 200 nL of oil to prepare. The utility of this method is illustrated for the case of the liquid crystalline oil 4-pentyl-4'-cyanobiphenyl (5CB). Transfer of monolayers of either dilauroyl- or dipalmitoylphosphatidylcholine (DLPC and DPPC, respectively) to the nematic 5CB-aqueous interface is demonstrated by epifluorescence imaging of fluorescently labeled lipid and polarized light imaging of the orientational order within the thin film of nematic 5CB. Interfaces prepared in this manner are used to reveal key differences between the density-dependent phase properties of DLPC and DPPC monolayers formed at air-water as compared to that of nematic 5CB-aqueous interfaces. The methodology described in this article should be broadly useful in advancing studies of the interfacial behavior of synthetic and biological molecules at liquid-liquid interfaces.  相似文献   

18.
19.
A comparative study of spread and adsorbed monolayer of poly(ethylene oxide)s of different molecular weight hydrophobically modified with alkyl isocyanates of different length chain is reported. The modification of the polymer was carried out according to reported procedures. The polymers obtained were studied at the air-water interface by Langmuir isotherms for spread monolayers and by Gibbs isotherms for the adsorption process. Isotherms obtained are interpreted in terms of the hydrophobic and hydrophilic balance of the polymers. Limiting area per repeating unit (A(0)) and collapse pressure (pi(c)) from spread monolayers were obtained. Spread monolayers of the hydrophobically modified polymers show larger collapse pressure values than unmodified polymer monolayers. In the adsorption process the excess surface concentration Gamma(infinity), area per repeat unit sigma, and efficiency of the adsorption were determined. The values of the area occupied per repeat unit in adsorbed monolayer (sigma) were larger than those of the spread monolayer. The efficiency of the adsorption of poly(ethylene oxide)s increases with the hydrophobic modification and with the alkyl chain length.  相似文献   

20.
UV-vis reflection spectroscopy has been used for proving in situ the organization of pure viologen and hybrid viologen tetracyanoquinodimethanide monolayers at the air-water interface. Other more classical measurements concerning Langmuir monolayers, including surface pressure-area and surface potential-area isotherms, are also provided. The organization of the viologen in the Langmuir monolayer was investigated upon the different states of compression, and the tilt angle of the viologen moieties with respect to the water surface was determined. A gradual transition of the viologen molecules from a flat orientation in the gas phase to a more tilted position with respect to the water surface in the condensed phases occurs. The addition of a tetracyanoquinodimethane (TCNQ) salt in the subphase leads to the penetration of TCNQ anions into the positively charged viologen monolayer forming a hybrid viologen tetracyanoquinodimethanide film where a charge-transfer interaction between the two moieties is observed. From a quantitative analysis of the reflection spectra, an organization model of these hybrid monolayers at the air-water interface is proposed, suggesting a parallel arrangement of viologen and TCNQ units with a 1:2 stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号