首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The freezing-point depression of the ternary systems tetraalkylammonium bromides-t-butanol-water for the first five homologs of R4NBr was measured. In the case of Bu4NBr, the effect of size of the alcohol (methahol ton-butanol) was also investigated. From the corresponding freezing-point data for the binary systems the apparent salting constants were calculated. The true salting constantsk s were obtained by extrapolation to infinite dilution. These are all very close to zero at the freezing temperature. From the corresponding thermochemical data the temperature dependence ofk s was calculated, and above 5°C all the R4NBr salts int-butanol; the salting-in increases with temperature and with the size of the hydrophobic cations. The scaled-particle theory is at present the only one which can account semiquantitatively for the temperature dependence of the salting-in effect. On leave of absence from Chemistry Department, The University, Sheffield S3 7HF, England To whom correspondence should be addressed.  相似文献   

2.
The motion of each polymeric radical during a collision between the polymeric radicals with the same radius is treated as completely random motion. The result obtained is: kt = 0.250ks (where kt is the chain-termination rate constant and ks is the reaction rate constant between radical chain ends). On taking the motion of the primary radical during a collision between a primary radical and a large polymeric radical to be completely random, the result obtained is: kti = 0.250ksi (where kti is the primary radical termination rate constant and ksi is the reaction rate constant between primary radical and radical chain end). On substituting ks for ksi in the second equation, the rate constant obtained becomes the chain termination rate constant between the very small polymeric radical and the very large polymeric radical, and identical to the former equation. This identity indicates that the effect of the difference of the size of the polymeric radicals on the collision process relating to the chain termination rate constant should not be large.  相似文献   

3.
At bromide concentrations higher than 0.1 M, a second term must be added to the classical rate law of the bromate–bromide reaction that becomes ?d[BrO3?]/dt = [BrO3?][H+]2(k1[Br?] + k2[Br?]2). In perchloric solutions at 25°C, k1 = 2.18 dm3 mol?3 s?1 and k2 = 0.65 dm4 mol?4 s?1 at 1 M ionic strength and k1 = 2.60 dm3 mol3 s?1and k2 = 1.05 dm4 mol?4 s?1 at 2 M ionic strength. A mechanism explaining this rate law, with Br2O2 as key intermediate species, is proposed. Errors that may occur when using the Guggenheim method are discussed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 17–21, 2007  相似文献   

4.
张志凌  左超  庞代文 《化学学报》2005,63(22):2069-2076
采用自己建立的DNA表面电化学研究微量方法, 研究了单双链DNA与两种锇配合物(联吡啶锇和二氯菲咯啉锇)的相互作用. 研究发现, 两种锇配合物都是通过静电作用与DNA结合, 其作用方式不受溶液离子强度的影响. 并计算得到了联吡啶锇和二氯菲咯啉锇与dsDNA和ssDNA相互作用的多个热力学和动力学参数, 如结合常数K3+K2+, 结合常数比K3+/K2+, 离子强度为零时的极限比 , 结合自由能ΔGb, 解离速度常数k, 结合位点数s.  相似文献   

5.
Catalysis of the electrochemical oxygen reduction reaction (ORR) on a pyrolytic graphite electrode (PGE) by iron-containing superoxide dismutase (Fe-SOD) is investigated for the first time using cyclic voltammetry and electrochemical impedance spectroscopy. The study is carried out in three room-temperature ionic liquids (RTILs), namely, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4), 1-propyl-3-methylimidazolium tetrafluoroborate (PMIBF4), and 1-butyl-3-methylimidazolium tetrafluoroborate (EMIBF4). The results demonstrate that in EMIBF4, Fe-SOD exhibits the most satisfactory catalysis for ORR, with the standard rate constant of ORR on bare PGE, k s, increasing from 3.9 to 5.1 times 10−3 cm s−1, while in PMIBF4 and BMIBF4 containing Fe-SOD k s increases from 2.6 to 3.6 and from 1.4 to 2.2 times 10−3 cm s−1, respectively. In addition to the increased k s, adding Fe-SOD renders the formal potential of ORR more positive. To accelerate the electron transfer, multi-walled carbon nanotubes (MWCNTs) are employed to modify PGE, consequently, yielding the dramatically increased peak current and k s. For MWCNTs-modified PGE in EMIBF4 free of Fe-SOD, k s increases from 3.9 to ∼7.1 times 10−3 cm s−1. The ORR catalysis by Fe-SOD in the presence of Fe-SOD is also evidenced by the formal-potential shift in the positive direction. With MWCNTs accounting for the larger k s and Fe-SOD being responsible for the formal-potential shift, the catalysis of ORR is satisfactory. Chronocoulmetry experiments proved that some Fe-SOD could be adsorbed on PGE. After analyzing the results, dismutation of superoxide anion O 2 by Fe-SOD is thought to be the main reason for the formal-potential shift. The different polarity of RTILs is probably partly responsible for different k s obtained in different RTILs. Basing on an earlier proposition, the catalysis of ORR by MWCNTs in RTILs is discussed. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 9, pp. 1137–1146. The text was submitted by the authors in English.  相似文献   

6.
It is shown that the variation of the critical micelle concentration (CMC) of two ionic surfactants (trimethyldodecylammonium bromide and sodium dodecyl sulfate) with the addition of a number of polar solutes in aqueous solutions follows a generalized type of Setchenov equation which allows the definition of a micellization constant KM specific to each solute. This constant is a sum of a number of terms: the classical salting constant, an electrical term, and a free energy term. Using a precise vapor pressure method, the salting constant ks was determined for a number of polar solutes in aqueous trimethyldodecylammonium bromide solutions. Using CMC determinations from the literature, it was shown that for solutes such as dimethylformamide, acetamide, urea, and dimethylurea, ks = KM, that is, the increase of the CMC is entirely attributable to the change in the medium due to the solute + monomer surfactant interactions; furthermore the change of the electrical terms upon addition of the solutes is negligible. In other cases, like acetone, dioxane, thiourea, or 1-alkanols, a partition coefficient may be easily calculated from a comparison between KM and ks.  相似文献   

7.
The rate of oxygen exchange between trans-[Re(py)4O2]+ and solvent water in pypyH+ buffer solution follows simple first-order kinetics and both oxygens are equivalent. The half-life for isotopic oxygen exchange is about 12 h at a pH of 5.0, 25°C, and [py] = 0.10 M. The observed rate constant for exchange increases with acidity, in the pH range 4 to 6, decreases with [py], and is nearly independent of ionic strength. A small but significant increase of kobs occurs with increasing complex concentration. The rate of exchange follows the rate equation kobs/2 = k0 + k1/[py] with k0 = 1.4 × 10?5(2) s?1 and k1 = 4.7 × 10?7(1) M, s?1 at 25°C. The activation parameters for the reaction at pH = 7.15 (predominately the k0 term) are: ΔH* = +137.(1) kJ/M and ΔS* = +126.(1) J/MK. The pH effect and complex concentration effect are discussed in mechanistic terms. These results are compared to those found for [Re(en)2O2]+ and [Re(CN)4O2]3?.  相似文献   

8.
Rate constants have been measured in several aqueous/organic solvent mixtures for the addition reaction of Cl2˙? radicals with 2-propen-1-o1 and 2-buten-1-o1 as a function of temperature and with 2, 3-dimethyl-2-butene at room temperature. The rate constants were in the range of 106–109 L mol?1 s?1, the activation energies were relatively low (1–10 kJ mol?1), and the pre-exponential factors varied over the range log A = 7.9 to 9.4. The rate constants (k) decreased (by up to a factor of 30) upon increasing the fraction of organic solvent and log k correlated linearly with the dielectric constant for a given water/organic solvent system, but the lines for the different solvent systems had different slopes. A better correlation of log k was found with a combination of the solvatochromic factor, ET(30), and the hydrogen-bond donor acidity factor, α. This suggests that the rate of reaction is influenced by the solvent polarity and also by specific solvation of the ionic reactant and product. Solvent effect on the reaction of SO4˙? with 2-propen-1-o1 was studied for comparison. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The standard rate constants (k s) of charge transfer on a glass carbon electrode were determined for the Cr(III)/Cr(II) redox pair in the NaCl-KCl-K3CrF6, KCl-K3CrF6, and CsCl-K3CrF6 systems at 973–1173 K by cyclic voltammetry. The k s constant was found to increase at elevated temperatures and the following nonmonotonic dependence of k s on the nature of the outer-spheric cation was found: k s (CsCl) > k s (NaCl-KCl) > k s (KCl). On the basis of quantum-chemical data for the M3CrF6 + 18MCl (M = Na, K) model systems, it was shown that the complex chromium particles with four or five outer-spheric sodium or potassium cations had maximum thermodynamic stability. Quantum-chemical calculations were performed to interpret the experimental data on the effect of the second coordination sphere of the complexes on the standard charge transfer rate constants.  相似文献   

10.
The pressure-jump method has been used to determine the rate constants for the formation and dissociation of nickel(II) and cobalt(II) complexes with cinchomeronate in aqueous solution at zero ionic strength. The forward and reverse rate constants obtained are kf = 2.27 × 106 M?1 s?1 and kr = 3.81 × 101 s?1 for the nickel(II) complex and kf = 1.23 × 107 M?1 s?1 and kr = 2.66 × 102 s?1 for the cobalt(II) complex at 25°C. The activation parameters of the reactions have also been obtained from the temperature variation study. The results indicate that the rate determining step of the reaction is a loss of a water molecule from the inner coordination sphere of the cation for the nickel(II) complex and the chelate ring closure for the cobalt(II) complex. The influence of the pyridine ring nitrogen atom of the cinchomeronate ligand on the complexation of cobalt(II) ion is also discussed.  相似文献   

11.
The effects of non‐ideal initiator decomposition, i.e., decomposition into two primary radicals of different reactivity toward the monomer, and of primary radical termination, on the kinetics of steady‐state free‐radical polymerization are considered. Analytical expressions for the exponent n in the power‐law dependence of polymerization rate on initiation rate are derived for these two situations. Theory predicts that n should be below the classical value of 1/2. In the case of non‐ideal initiator decomposition, n decreases with the size of the dimensionless parameter α ≡ (ktz /kdz) √rinkt, where ktz is the termination rate coefficient for the reaction of a non‐propagating primary radical with a macroradical, kdz is the first‐order decomposition rate coefficient of non‐propagating (passive) radicals, rin is initiation rate, and kt is the termination rate coefficient of two active radicals. In the case of primary radical termination, n decreases with the size of the dimensionless parameter βkt,s rin1/2/kp,s M rt,l1/2, where kt,s is the termination rate coefficients for the reaction of a primary (“short”) radical with a macroradical, kt,l is the termination rate coefficients of two large radicals, kp,s is the propagation rate coefficient of primary radicals and M is monomer concentration. As kt is deduced from coupled parameters such as kt /kp, the dependence of kp on chain length is also briefly discussed. This dependence is particularly pronounced at small chain lengths. Moreover, effects of chain transfer to monomer on n are discussed.  相似文献   

12.
Standard charge transfer rate constants (k s) were defined for Nb(V)/Nb(IV) redox couples in NaF-KF (eutectic)-K2NbF7, KF-K2NbF7, and CsF-K2NbF7 melts using the cyclic voltammetry technique. It was established that in fluoride melts, the k s values change in the following order depending on the composition of the second coordination sphere: k s (CsF) < k s (KF) < k s (NaF-KF).  相似文献   

13.
The heterogeneous electron transfer rate constant (k s) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (τL) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k s varies inversely with τL; k s is proportional to D of DMFc. Both D and k s of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k s of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte. Received: 5 February 1998 / Accepted: 23 July 1998  相似文献   

14.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

15.
The formulas C n H s (n; s) for helicenic hydrocarbons are treated. The restrictions onn ands are specified comprehensively in terms of inequalities. General expressions are given for the C n H s formulas of extremal helicenes and some of their subclasses: circumextremal- and circular helicenes. Sequences of formulas for extremal helicenes, viz. (n 0; s0), (n 1; s1), ..., (n k; sk), ..., are defined. Here (n 0;s 0) is said to represent ground-form helicenes, while (n k; sk) for k > 0 pertain to higher members. A higher member with the formula (n k; sk) is an extremal helicene which can be obtained byk-fold complete sedimentation of a ground form. This process corresponds to circumscribing of benzenoids. A formula index, viz.x as a function ofn ands, distinguishes different classes of helicenes and can be used to identify the formulas for ground forms and higher members. The possible C n H s formulas for helicenes and their indices are tabulated. Finally the numbers of edges in C n H s isomers are discussed.  相似文献   

16.
    
The title cations were produced in aqueous solution by chemical initiation (solvolysis) of benzyl-gem-dihalides and benzyl-gem-diazides. The solvolysis reactions of benzyl-gem-dihalides and benzyl-gem-diazides in water proceed by a stepwise mechanism through α-halobenzyl carbocation and α-azidobenzyl carbocation intermediates, which are captured by water to give the corresponding carbonyl compounds as the sole detectable products. Rate constant ratiok x/ks(M−1) for partitioning of the carbocation between reaction with halide/azide ion and reaction with water is determined by analysis of halide/azide common ion inhibition of the solvolysis reaction. The rate constantsk s(s-1) for the reaction of the cation with solvent water were determined from the experimental values ofk x/ks andk solv, for the solvolysis of the benzyl-gem-dihalides and benzyl-gem-diazides respectively, usingk x = 5 × 109M−1 s−1 for diffusion-limited reaction of halide/azide ion with α-substituted benzyl carbocations. The values of 1/k s are thus the lifetimes of the α-halobenzyl carbocations and α-azidobenzyl carbocations respectively.  相似文献   

17.
Films of linear and branched oligomer wires of Fe(tpy)2 (tpy=2,2′:6′,2′′‐terpyridine) were constructed on a gold‐electrode surface by the interfacial stepwise coordination method, in which a surface‐anchoring ligand, (tpy? C6H4N?NC6H4? S)2 ( 1 ), two bridging ligands, 1,4‐(tpy)2C6H4 ( 3 ) and 1,3,5‐(C?C? tpy)3C6H3 ( 4 ), and metal ions were used. The quantitative complexation of the ligands and FeII ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4 . STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron‐transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential‐step chronoamperometry (PSCA). The unique current‐versus‐time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox‐polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox‐complex moiety, k1 (s?1), as well as that for intrawire electron transfer between neighboring redox‐complex moieties, k2 (cm2 mol?1 s?1). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron‐hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: k10=110 s?1, k20=2.6×1012 cm2 mol?1 s?1 for [n Fe 3 ], and k10=100 s?1, k20=4.1×1011 cm2 mol?1 s?1 for [n Fe 4 ] (n=number of complexation cycles).  相似文献   

18.
Pulsed laser polymerization was used in conjunction with aqueous‐phase size exclusion chromatography with multi‐angle laser light scattering detection to determine the propagation rate coefficient (kp) for the water‐soluble monomer acrylamide. The influence of the monomer concentration was investigated from 0.3 to 2.8 M, and kp decreased with increasing monomer concentration. These data and data for acrylic acid in water were consistent with this decrease being caused by the depletion of the monomer concentration by dimer formation in water. Two photoinitiators, uranyl nitrate and 2,2′‐azobis(2‐amidinopropane) (V‐50), were used; kp was dependent on their concentrations. The concentration dependence of kp was ascribed to a combination of solvent effects arising from association (thermodynamic effects) and changes in the free energy of activation (effects of the solvent on the structure of the reactant and transition state). Arrhenius parameters for kp (M?1 s?1) = 107.2 exp(?13.4 kJ mol?1/RT) and kp (M?1 s?1) = 107.1 exp(?12.9 kJ mol?1/RT) were obtained for 0.002 M uranyl nitrate and V‐50, respectively, with a monomer concentration of 0.32 M. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1357–1368, 2005  相似文献   

19.
The rate constant for the reactions of atomic chlorine with 1,4‐dioxane (k1), cyclohexane (k2), cyclohexane‐d12(k3), and n‐octane (k4) has been determined at 240–340 K using the relative rate/discharge fast flow/mass spectrometer (RR/DF/MS) technique developed in our laboratory. Essentially, no temperature dependence for these reactions was observed over this temperature range, with an average of k1 = (1.91 ± 0.20) × 10?10 cm3 molecule?1 s?1, k2 = (2.91 ± 0.31) × 10?10 cm3 molecule?1 s?1, k3 = (2.73 ± 0.30) × 10?10 cm3 molecule?1 s?1, and k4 = (3.22 ± 0.36) × 10?10 cm3 molecule?1 s?1, respectively. The kinetic isotope effect of the reaction of cyclohexane with atomic chlorine has also been determined to be 1.14 by directly monitoring the decay of both cyclohexane and cyclohexane‐d12 in the presence of chlorine atoms, which is consistent with the literature value of 1.20. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 386–398, 2006  相似文献   

20.
Ionic liquids are organic salts that are liquid at ambient temperatures, preferably at room temperature. They are nonvolatile, thermally and chemically stable, highly polar liquids that dissolve many organic, inorganic, and metallo‐organic compounds. Many combinations of organic cations with different counterions are already known, and the properties of ionic liquids may be adjusted by the proper selection of the cation and counterion. In the last decade, there has been increasing interest in using ionic liquids as solvents for chemical reactions. The interest is stimulated not only by their nonvolatility (green solvents) but also by their special properties, which often affect the course of a reaction. In recent years, ionic liquids have also attracted the attention of polymer chemists. Although the research on using ionic liquids in polymer systems is still in its infancy, several interesting possibilities have already emerged. Ionic liquids are used as solvents for polymerization processes, and in several systems they indeed show some advantages. In radical polymerization, the kp/kt ratio (where kp is the rate constant of propagation and kt is the rate constant of termination) is higher than in organic media, and thus better control of the process can be achieved. Ionic liquids, as electrolytes, have also attracted the attention of researchers in the fields of electrochemical polymerization and the synthesis of conducting polymers. Finally, the blending of ionic liquids with polymers may lead to the development of new materials (ionic liquids may act as plasticizers, electrolytes dispersed in polymer matrices, or even porogens). In this article, the new developments in these fields are briefly discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4675–4683, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号