首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Capillary electrophoresis (CE) has been combined with atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) for mass spectrometric (MS) detection. Separation conditions using potassium phosphate buffer and ammonium formate buffer have been compared for analysis of eleven pharmaceutical bases. The results showed improvements in separation efficiency and peak symmetry when phosphate buffer was used. The low flow in CE may enable utilization of these advances with MS detection. Compared with ESI, the APPI technique provided a cluster-free background. The enhanced signal-to-noise ratio in the total ion current (TIC) and the reduced spectral background indicated that the APPI process is less affected by non-volatile salts in the CE buffers. This results in a wider range of choice of CE buffers in CE/MS analysis when APPI is the ionization method.  相似文献   

2.
The analysis of crude oil samples remains a tough challenge due to the complexity of the matrix and the broad range of physical and chemical properties of the various individual compounds present. In this work, atmospheric pressure laser ionization (APLI) is utilized as a complementary tool to other ionization techniques for crude oil analysis. Mass spectra obtained with electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) are compared. APLI is primarily sensitive towards non‐polar aromatic hydrocarbons, which are generally present in high amounts especially in heavy crude oil samples. The ionization mechanisms of APLI vs. APPI are further investigated. The results indicate the advantages of APLI over established methods like ESI and APPI. The application of APLI in combination with Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) is thus demonstrated to be a powerful tool for the analysis of aromatic species in complex crude oil fractions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Atmospheric pressure photoionization (APPI) is a novel method of ionization in liquid chromatography/mass spectrometry (LC/MS). It was originally developed in order to broaden the range of LC/MS ionizable compounds towards less polar compounds that cannot be analyzed by electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Studies done thus far have shown that non-polar compounds that earlier were not ionizable in LC/MS can indeed be ionized by the use of APPI. However, the best ionization efficiency for low polarity samples has been achieved with low proton affinity (PA) solvents that are not suitable in reversed-phase LC (RP-LC). Here it is demonstrated that the signals for analytes with low proton affinities in acetonitrile can be increased 100-fold by using anisole as the dopant for APPI, which takes the sensitivity to the same level achieved in the analysis of high PA analytes.  相似文献   

4.
Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC–MS is challenging due to the non‐polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on‐column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.  相似文献   

6.
Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.
Figure
LC-APCI-MS/MS for analysis of halogenated flame reterdants  相似文献   

7.
Liquid chromatography/atmospheric pressure photoionization tandem mass spectrometry (LC/APPI-MS/MS) was investigated as an instrumental method for the analysis of the halogenated norbornene flame retardants, Mirex, Dechloranes 602, 603, 604, and Dechlorane Plus (DP). The LC separation was optimized by screening a variety of stationary and mobile phases, resulting in a short LC separation time of 5 min. Different atmospheric pressure ionization approaches were examined including electrospray ionization, atmospheric pressure chemical ionization, and APPI, each with and without post-column addition. APPI without post-column addition was chosen for providing the best ionization response. The optimized LC/APPI-MS/MS approach resulted in instrument detection limits ranging between 25 and 50 pg. Good linearity was also achieved (up to 25.0 ng/μL; R >0.999). The method was applied to extracts of environmental samples including surface water, fish and sediments for screening purposes, and the results agreed well with those obtained by gas chromatography/mass spectrometry.  相似文献   

8.
A comparison was made between the electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) tandem mass spectrometric (MS/MS) responses of eleven ultraviolet (UV) filters. Four of the target compounds were favourably ionized in negative ion mode, and the other seven compounds in positive ion mode. For nine of the compounds APPI generated a similar response to that of ESI, but the APPI signal‐to‐noise (S/N) ratios were 1.3–60 times higher. The two most polar of the UV filter compounds (PBSA and BP‐4) were more efficiently ionized by ESI, offering higher signal intensities and lower detection limits. APPI was, however, less susceptible to ion suppression than ESI when real samples were injected. In order to optimize the APPI conditions different dopant solvents were examined to enhance the efficiency of the photoionization process. Among the evaluated dopants, toluene was selected as the best compromise. At a toluene flow rate of 10% of the solvent flow rates the ionization response increased by a factor of 40–50 over the use of no dopant for the compounds in positive ion mode and by more than 300 for the compounds in negative ion mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of nine different eluent compositions on the ionization efficiency of five flavonoids was studied using ion spray (IS), atmospheric pressure chemical ionization (APCI), and the novel atmospheric pressure photoionization (APPI), in positive and negative ion modes. The eluent composition had a great effect on the ionization efficiency, and the optimal ionization conditions were achieved in positive ion IS and APCI using 0.4% formic acid (pH 2.3) as a buffer, and in negative ion IS and APCI using ammonium acetate buffer adjusted to pH 4.0. For APPI work, the eluent of choice appeared to be a mixture of organic solvent and 5 mM aqueous ammonium acetate. The limits of detection (LODs) were determined in scan mode for the analytes by liquid chromatography/mass spectrometry using IS, APCI and APPI interfaces. The results show that negative ion IS with an eluent system consisting of acidic ammonium acetate buffer provides the best conditions for detection of flavonoids in mass spectrometry mode, their LODs being between 0.8 and 13 microM for an injection volume of 20 microl.  相似文献   

10.
The performance of the atmospheric pressure photoionization (APPI) technique was evaluated against five sets of standards and drug-like compounds and compared to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI technique was first used to analyze a set of 86 drug standards with diverse structures and polarities with a 100% detection rate. More detailed studies were then performed for another three sets of both drug standards and proprietary drug candidates. All 60 test compounds in these three sets were detected by APPI with an overall higher ionization efficiency than either APCI or ESI. Most of the non-polar compounds in these three sets were not ionized by APCI or ESI. Analysis of a final set of 201 Wyeth proprietary drug candidates by APPI, APCI and ESI provided an additional comparison of the ionization techniques. The detection rates in positive ion mode were 94% for APPI, 84% for APCI, and 84% for ESI. Combining positive and negative ion mode detection, APPI detected 98% of the compounds, while APCI and ESI detected 91%, respectively. This analysis shows that APPI is a valuable tool for day-to-day usage in a pharmaceutical company setting because it is able to successfully ionize more compounds, with greater structural diversity, than the other two ionization techniques. Consequently, APPI could be considered a more universal ionization method, and therefore has great potential in high-throughput drug discovery especially for open access liquid chromatography/mass spectrometry (LC/MS) applications.  相似文献   

11.
The use of high-performance liquid chromatography combined with chloride-enhanced atmospheric pressure chemical ionization for the determination of polychlorinated n-alkanes (PCAs, also called chlorinated paraffins or CPs) is described as an alternative to gas chromatographic methods. Atmospheric pressure chemical ionization in the negative ion mode formed exclusively [M+Cl](-) adduct ions and suppressed fragmentation when a chlorinated solvent was added. Limits of detection were 1-2 ng/microL for technical PCA mixtures. Response factors for single short-chain PCA homologues with different degrees of chlorination varied by not more than a factor of 6.5. The developed method was applied for the determination of the composition of technical PCA mixtures as well as for the analysis of PCAs in household commodities. Medium-chain PCAs were found in paint samples at concentrations of 8.2-11.5% (w/w), compared with 7.4-11.5% obtained by gas chromatography combined with electron ionization tandem mass spectrometry.  相似文献   

12.
The potential of atmospheric pressure photoionization was investigated for the structural analysis of phosphatidylcholine lipids (PCs). [M+H]+ ions of high abundance were obtained, along with several fragment ions. Three of these dissociation products corresponded to quite unusual fragmentation pathways but allowed the determination of both the nature and the position on the glycerol backbone (sn-1 or sn-2) of the fatty acyl chains. The loss of a methyl group from the choline head was also observed. These results suggest a complex ionization mechanism in APPI. However, this method proved to be very powerful for the rapid structural analysis of PC species without using MS/MS experiments.  相似文献   

13.
The analytical hyphenation of micro-flow high-performance liquid chromatography (LC), with post-column liquid mixing and mass spectrometric detection (MS) was established to detect partially oxidized polycyclic aromatic hydrocarbons (oxy-PAHs) for low quantity samples. 100pmol injections of 30 reference standards could be detected in good sensitivity using either atmospheric pressure chemical ionization (APCI) and/or atmospheric pressure photoionization (APPI). The connected mass spectrometer was a single quadrupol analyzer realizing simultaneous registration of positive and negative ions in scan range width of 200 - 300Da. The ionization efficiency was compared using three ionization sources (incl. electrospray ionization (ESI)) for several oxy-PAHs. According to the mass spectra, the analytes behave differently in ionization properties. Ionization mechanism (e.g. deprotonated ions and electron captured ions) could be discussed with new inside views. Finally, the hyphenated system was applied to an exemplary aerosol extract and thus highlighting the expedient utilization of this downscaled method for real samples.  相似文献   

14.
We introduce a novel electropneumatic‐heated nebulizer (EPn‐HN), incorporating an electrified internal pneumatic nebulizer, to enhance the yield of sprayed ions from PhotoSpray? atmospheric pressure photoionization (APPI) sources for liquid chromatography/mass spectrometry (LC/MS). Spray ionization from the pneumatic‐heated nebulizers used in APPI sources provides a supplemental, complementary ionization method to be used for involatile and thermally labile compounds, otherwise intractable to APPI. Details of the construction and operation of the EPn‐HN device are provided. The performance of the EPn‐HN is demonstrated using two model compounds: substance P, a peptide used as a standard in studies of ion fragmentation mechanisms, and aztreonam, a thermally labile antibiotic. At the optimum voltage for spray ionization, improvements in sensitivity of two orders of magnitude are obtained relative to when the sprayer is grounded, the conventional case. Since both substance P and aztreonam cannot be detected using the APPI method alone, the results demonstrate how spray ionization from the EPn‐HN may be used to extend the range of compounds amenable to PhotoSpray sources. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The on-line coupling of capillary electrophoresis (CE) and mass spectrometry (MS) via atmospheric pressure photoionization (APPI) is demonstrated. To achieve CE-APPI-MS, an adapted coaxial sheath-flow interface was combined with an ion-trap mass spectrometer equipped with an APPI source originally designed for liquid chromatography-MS. Effective photoionization of test compounds was accomplished after optimization of several interface and MS parameters, and of the composition and flow rate of the sheath liquid. Further enhancement of the ionization efficiency could be achieved by adding a dopant, such as acetone or toluene, to the sheath liquid to aid indirect ionization. Acetone significantly increased the ionization of the polar test compounds by proton transfer, while toluene was more useful for the enhanced formation of molecular ions from nonpolar compounds. The effect of several common CE background electrolytes (BGEs) on the APPI-MS response of the analytes was also studied. It appeared that in contrast with electrospray ionization, nonvolatile BGEs do not cause suppression of analyte signals using APPI. Therefore, in CE-APPI-MS, a variety of buffers can be chosen, which obviously is a great advantage during method development. Remarkably, also sodium dodecyl sulfate (SDS) did not affect the photoionization of the test compounds, indicating a strong potential of APPI for the on-line coupling of micellar electrokinetic chromatography (MEKC) and MS.  相似文献   

16.
Mass spectrometers equipped with atmospheric pressure ion sources (API-MS) have been designed to be interfaced with liquid chromatographs (LC) and have rarely been connected to gas chromatographs (GC). Recently, we introduced a heated nebulizer microchip and showed its potential to interface liquid microseparation techniques and GC with API-MS. This study demonstrates the feasibility of GC-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) in the analysis of underivatized anabolic steroids in urine. The APPI microchip provides high ionization efficiency and produces abundant protonated molecules or molecular ions with minimal fragmentation. The feasibility of GC-μAPPI-MS/MS in the analysis of six selected anabolic steroids in urine samples was studied with respect to intra-batch repeatability, linearity, linear range, and limit of detection (LOD). The method showed good sensitivity (LODs 0.2-1 ng/mL), repeatability (relative standard deviation<10%), and linearity (regression coefficient≥0.9995) and, therefore, high potential for the analysis of anabolic steroids. Quantitative performance of the method was tested with two authentic urine samples, and the results were in good agreement with those obtained with conventional GC-electron ionization-MS after derivatization.  相似文献   

17.
Gas chromatography/mass spectrometry (GC/MS) is applied to the analysis of volatile and thermally stable compounds, while liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI‐MS) and liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS) are preferred for the analysis of compounds with solution acid‐base chemistry. Because organic explosives are compounds with low polarity and some of them are thermally labile, they have not been very well analyzed by GC/MS, LC/APCI‐MS and LC/ESI‐MS. Herein, we demonstrate liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry (LC/NI‐APPI‐MS) as a novel and highly sensitive method for their analysis. Using LC/NI‐APPI‐MS, limits of quantification (LOQs) of nitroaromatics and nitramines down to the middle pg range have been achieved in full MS scan mode, which are approximately one order to two orders magnitude lower than those previously reported using GC/MS or LC/APCI‐MS. The calibration dynamic ranges achieved by LC/NI‐APPI‐MS are also wider than those using GC/MS and LC/APCI‐MS. The reproducibility of LC/NI‐APPI‐MS is also very reliable, with the intraday and interday variabilities by coefficient of variation (CV) of 0.2–3.4% and 0.6–1.9% for 2,4,6‐trinitrotoluene (2,4,6‐TNT). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The only relevant source for human exposure to dinitropyrenes is diesel engine emissions. Due to this specificity, dinitropyrenes may be used as biomarkers for monitoring human exposure to diesel engine emissions. Only few analytical methods have been described for the quantitation of dinitropyrenes and their metabolites, aminonitropyrenes, and diaminopyrenes. Therefore, for dinitropyrenes, aminonitropyrenes, and diaminopyrenes were selected as model compounds for the development of a sensitive HPLC-MS/MS method (high performance liquid chromatography coupled to triple quadrupole mass spectrometry) was to quantify polyaromatic amines and nitroarenes in biological matrices was developed optimal methods by comparing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) sources. Dinitropyrene was not effectively ionized and diaminopyrene yielded mainly [M(.)](+) ions by electrospray ionization. With APCI and APPI, precursor ions of diaminopyrene and aminonitropyrene were [M + H](+) and [M(.)](-) for dinitropyrene. Precursor ions with [M - 30(.)](-) for dinitropyrene and [M - 30 + H](+) for aminonitropyrene were observed. Reversed and normal phase HPLC-MS/MS with ESI, APCI and APPI were optimized separately with respect to unequivocal analyte identification and sensitivity. Normal phase HPLC coupled to APPI-MS/MS gave the highest precision and sensitivity for aminonitropyrene (6%/0.2 pg on column) and dinitropyrene (9%/0.5 pg on column). The limit of detection in spiked rat plasma was 5 pg/100 microL for aminonitropyrene (accuracy 82%) and 10 pg/100 microL for dinitropyrene (accuracy 105%). In plasma of rats treated with dinitropyrene by oral administration, no detectable levels of dinitropyrene but higher aminonitropyrene levels compared with intratracheal instillation were observed. These findings clearly demonstrate that dinitropyrene was absorbed after oral and intratracheal application and that a reduction of nitro groups occurs to a high extent in the reductive environment of the intestine. To our knowledge, this is the first time that aminonitropyrene was observed in plasma after intratracheal or oral administration directly demonstrating the reductive metabolism of dinitropyrene in vivo.  相似文献   

19.
This study compared the sensitivities and matrix effects of four ionization modes and four reversed-phase liquid chromatographic (LC) systems on analyzing estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 4-nonylphenol (NP), 4-tert-octylphenol (OP), bisphenol A (BPA) and their derivatives of dansyl chloride or pentafluorobenzyl bromide (PFBBr) in water matrixes using a triple-quadrupole mass spectrometer with selected reaction monitoring (SRM). The four probes were electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI) and APCI/APPI; the four LC systems were ultra-performance liquid chromatography (UPLC) with or without post-column split, a mixed-mode column and two-dimensional LC (2D-LC). Dansylated compounds with ESI at UPLC condition had the most intense signals and less matrix effects of the various combinations of ionization and LC systems. The on-column limits of detection (LODs) of dansylated estrogens by SRM were 0.05–0.20 pg, and the LODs in sewage treatment plant effluent and in river water were 0.23–0.52 and 0.56–0.91 ng/L, respectively. The LODs using selected ion monitoring (SIM) reached low ng/L levels in real samples and measured concentrations were comparable with those of SRM.  相似文献   

20.
We report on the development of a new laser-ionization (LI) source operating at atmospheric pressure (AP) for liquid chromatography/mass spectrometry (LC/MS) applications. APLI is introduced as a powerful addition to existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI), and atmospheric pressure photoionization (APPI). Replacing the one-step VUV approach in APPI with step-wise two-photon ionization strongly enhances the selectivity of the ionization process. Furthermore, the photon flux during an ionization event is drastically increased over that of APPI, leading to very low detection limits. In addition, the APLI mechanism generally operates primarily directly on the analyte. This allows for very efficient ionization even of non-polar compounds such as polycyclic aromatic hydrocarbons (PAHs). The APLI source was characterized with a MicroMass Q-Tof Ultima II analyzer. Both the effluent of an HPLC column containing a number of PAHs (benzo[a]pyrene, fluoranthene, anthracene, fluorene) and samples from direct syringe injection were analyzed with respect to selectivity and sensitivity of the overall system. The liquid phase was vaporized by a conventional APCI inlet (AP probe) with the corona needle removed. Ionization was performed through selective resonance-enhanced multi-photon ionization schemes using a high-repetition-rate fixed-frequency excimer laser operating at 248 nm. Detection limits well within the low-fmol regime are readily obtained for various aromatic hydrocarbons that exhibit long-lived electronic states at the energy level of the first photon. Only molecular ions are generated at the low laser fluxes employed ( approximately 1 MW/cm(2)). The design and performance of the laser-ionization source are presented along with results of the analysis of aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号