共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Manuel A.V. Ribeiro da Silva Ana I.M.C. Lobo Ferreira Álvaro Cimas 《The Journal of chemical thermodynamics》2011,43(12):1857-1864
This paper reports a combined experimental and computational thermochemical study of 4-benzyloxyphenol. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p° = 0.1 MPa) molar enthalpy of combustion, , and of sublimation, , respectively, from which the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, were derived.For comparison purposes, the gas-phase enthalpy of formation of this compound was estimated by G3(MP2)//B3LYP calculations, using a set of gas-phase working reactions; the results are in excellent agreement with experimental data. G3(MP2)//B3LYP computations were also extended to the calculation of the gas-phase enthalpies of formation of the 2- and 3-benzyloxyphenol isomers. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies and, finally, O–H bond dissociation enthalpies. 相似文献
4.
5.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies. 相似文献
6.
《The Journal of chemical thermodynamics》2006,38(4):450-454
The standard (p∘ = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines. 相似文献
7.
8.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpy of sublimation, Delta(cr)(g)H(m)degrees, of the compound 2-chlorobenzophenone. For the other three compounds, the standard molar enthalpies of sublimation, at T = 298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapor pressures of these compounds, measured by the Knudsen-effusion technique. From the values of Delta(f)H(m)degrees and Delta(cr)(g)H(m)degrees, the standard molar enthalpies of formation of all the compounds, in the gaseous phase, Delta(f)H(m)degrees (g), at T = 298.15 K, were derived. These values were also calculated by using the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computational approach. 相似文献
9.
Ribeiro da Silva MA Ferreira AI Gomes JR 《The journal of physical chemistry. B》2007,111(23):6444-6451
The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase of seven isomers of fluoromethylaniline were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g) and HF.10H2O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation of these compounds, also at T = 298.15 K, were determined using Calvet microcalorimetry, while the enthalpies of fusion of the solid compounds were determined by differential scanning calorimetry. The standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived from the former two experimental quantities. G3MP2//B3LYP calculations were performed for all possible fluoromethylanilines allowing the estimation of data for the isomers that were not studied experimentally. The Cox scheme was applied with two different approaches for the estimation of the standard molar enthalpies of formation of all the isomers studied, and this led to the conclusion that the literature values for the enthalpies of formation of the meta and para isomers of methylaniline seem to be not reliable. Further G3MP2//B3LYPs calculations on the methylaniline isomers yielded new values for the standard molar enthalpies of formation of the isomers of methylaniline, which have been tested under the Cox scheme, resulting in better estimates. 相似文献
10.
Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline. 相似文献
11.
12.
Manuel A.V. Ribeiro da Silva Ana I.M.C. Lobo Ferreira Joana I.T.A. Cabral Ana Filipa L.O.M. Santos Ana Rita G. Moreno Tiago L.P. Galvão Inês M. Rocha Paula M.V. Fernandes Sílvia Q. Salgueiro Vanessa A.F. de Moura Isabel M.S.C. Oliveira Paula C. Cotelo Mariana R.A. Ribeiro 《The Journal of chemical thermodynamics》2009,41(9):984-991
13.
14.
15.
16.
DeClue MS Baldridge KK Kast P Hilvert D 《Journal of the American Chemical Society》2006,128(6):2043-2051
The versatile biosynthetic intermediate isochorismate decomposes in aqueous buffer by two competitive pathways, one leading to isoprephenate by a facile Claisen rearrangement and the other to salicylate via elimination of the enolpyruvyl side chain. Computation suggests that both processes are concerted but asynchronous pericyclic reactions, with considerable C-O cleavage in the transition state but relatively little C-C bond formation (rearrangement) or hydrogen atom transfer to the enolpyruvyl side chain (elimination). Kinetic experiments show that rearrangement is roughly 8-times more favorable than elimination. Moreover, transfer of the C2 hydrogen atom to C9 was verified by monitoring the decomposition of [2-(2)H]isochorismate, which was prepared chemoenzymatically from labeled shikimate, by (2)H NMR spectroscopy and observing the appearance of [3-(2)H]pyruvate. Finally, the isotope effects obtained with the C2 deuterated substrate are in good agreement with calculations assuming pericyclic reaction mechanisms. These results provide a benchmark for mechanistic investigations of isochorismate mutase and isochorismate pyruvate lyase, the enzymes that respectively catalyze the rearrangement and elimination reactions in plants and bacteria. 相似文献
17.
18.
Manuel A.V. Ribeiro da Silva Luís M. Spencer S. Lima Ana Rita G. Moreno Ana I.M.C.L. Ferreira José R.B. Gomes 《The Journal of chemical thermodynamics》2008,40(2):155-165
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values. 相似文献
19.
Combined experimental and computational study of the thermochemistry of the fluoroaniline isomers 总被引:1,自引:0,他引:1
Ribeiro da Silva MA Ferreira AI Gomes JR 《The journal of physical chemistry. B》2007,111(8):2052-2061
The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the condensed phase of all the fluoroanilines, with the exception of the 2,3,5-trifluoroaniline compound, were derived from the standard molar energies of combustion in oxygen at T = 298.15 K, measured by rotating bomb combustion calorimetry. Calvet high-temperature vacuum sublimation experiments were performed to measure their enthalpies of vaporization or sublimation. These experiments allowed the determination of the standard molar enthalpies of formation in the gaseous phase and at T = 298.15 K. These values are also compared with estimates based on G3MP2B3 and BP86/6-31+G(d) computations, which have been extended also to the fluoroaniline that was not studied experimentally. The results are in close agreement with a mean deviation of approximately 3 kJ.mol-1. The largest difference between experimental and G3MP2B3 values is found for the pentafluoroaniline (-7.0 kJ.mol-1). For the three monofluoroanilines, the composite approach has been used also to compute gas-phase acidities, electron and proton affinities, ionization enthalpies and N-H bond dissociation enthalpies. The computed values compare well with available experimental results supporting the new computed data. 相似文献
20.
Häller LJ Page MJ Erhardt S Macgregor SA Mahon MF Naser MA Vélez A Whittlesey MK 《Journal of the American Chemical Society》2010,132(51):18408-18416
A combination of experimental studies and density functional theory calculations is used to study C-N bond activation in a series of ruthenium N-alkyl-substituted heterocyclic carbene (NHC) complexes. These show that prior C-H activation of the NHC ligand renders the system susceptible to irreversible C-N activation. In the presence of a source of HCl, C-H activated Ru(I(i)Pr(2)Me(2))'(PPh(3))(2)(CO)H (1, I(i)Pr(2)Me(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reacts to give Ru(I(i)PrHMe(2))(PPh(3))(2)(CO)HCl (2, I(i)PrHMe(2) = 1-isopropyl-4,5-dimethylimidazol-2-ylidene) and propene. The mechanism involves (i) isomerization to a trans-phosphine isomer, 1c, in which hydride is trans to the metalated alkyl arm, (ii) C-N cleavage to give an intermediate propene complex with a C2-metalated imidazole ligand, and (iii) N-protonation and propene/Cl(-) substitution to give 2. The overall computed activation barrier (ΔE(++)(calcd)) corresponds to the isomerization/C-N cleavage process and has a value of +24.4 kcal/mol. C-N activation in 1c is promoted by the relief of electronic strain arising from the trans disposition of the high-trans-influence hydride and alkyl ligands. Experimental studies on analogues of 1 with different C4/C5 carbene backbone substituents (Ru(I(i)Pr(2)Ph(2))'(PPh(3))(2)(CO)H, Ru(I(i)Pr(2))'(PPh(3))(2)(CO)H) or different N-substituents (Ru(IEt(2)Me(2))'(PPh(3))(2)(CO)H) reveal that Ph substituents promote C-N activation. Calculations confirm that Ru(I(i)Pr(2)Ph(2))'(PPh(3))(2)(CO)H undergoes isomerization/C-N bond cleavage with a low barrier of only +21.4 kcal/mol. Larger N-alkyl groups also facilitate C-N bond activation (Ru(I(t)Bu(2)Me(2))'(PPh(3))(2)(CO)H, ΔE(++)(calcd) = +21.3 kcal/mol), and in this case the reaction is promoted by the formation of the more highly substituted 2-methylpropene. 相似文献