首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two methodologies of C-C bond formation to achieve organometallic complexes with 7 or 9 conjugated carbon atoms are described. A C7 annelated trans-[Cl(dppe)2Ru=C=C=C-CH=C(CH2)-C[triple bond]C-Ru(dppe)2Cl][X] (X = PF6, OTf) complex is obtained from the diyne trans-[Cl(dppe)2Ru-(C[triple bond]C)2-R] (R = H, SiMe3) in the presence of [FeCp2][PF6] or HOTf, and C7 or C9 complexes trans-[Cl(dppe)2Ru-(C[triple bond]C)n-C(CH3)=C(R1)-C(R2)=C=C=Ru(dppe)2Cl][X] (n = 1, 2; R1 = Me, Ph, R2 = H, Me; X = BF4, OTf) are formed in the presence of a polyyne trans-[Cl(dppe)2Ru-(C[triple bond]C)n-R] (n = 2, 3; R = H, SiMe3) with a ruthenium allenylidene trans-[Cl(dppe)2Ru=C=C=C(CH2R1)R2][X]. These reactions proceed under mild conditions and involve cumulenic intermediates [M+]=(C=)nCHR (n = 3, 5), including a hexapentaenylidene. A combination of chemical, electrochemical, spectroscopic (UV-vis, IR, NIR, EPR), and theoretical (DFT) techniques is used to show the influence of the nature and conformation of the bridge on the properties of the complexes and to give a picture of the electron delocalization in the reduced and oxidized states. These studies demonstrate that the C7 bridging ligand spanning the metal centers by almost 12 angstroms is implicated in both redox processes and serves as a molecular wire to convey the unpaired electron with no tendency for spin localization on one of the halves of the molecules. The reactivity of the C7 complexes toward protonation and deprotonation led to original bis(acetylides), vinylidene-allenylidene, or carbyne-vinylidene species such as trans-[Cl(dppe)2Ru[triple bond]C-CH=C(CH3)-CH=C(CH3)-HC=C=Ru(dppe)2Cl][BF4]3.  相似文献   

2.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

3.
Reactions between the building blocks [Ag2(mu-Ph2PXPPh2)2(MeCN)2]2+ and [Pt(C[triple bond]CC6H4R-p)4]2- (R = H, CH3) afforded strongly luminescent acetylide-linked neutral heterohexanuclear complexes Pt2Ag4(mu-Ph2PNPPh2)4 (C[triple bond]CC6H4R-p)4 (R = H, 1; CH3, 2) for X = NH, but a heterotrinuclear complex cation [PtAg2(mu-PPh2CH2PPh2)2 (C[triple bond]CC6H5)2(CH3CN)2]2+ (3(2+)) for X = CH2.  相似文献   

4.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

5.
Reactions between HC triple bond CC triple bond CSiMe3 and several ruthenium halide precursors have given the complexes Ru(C triple bond CC triple bond CSiMe3)(L2)Cp'[Cp'= Cp, L = CO (1), PPh3 (2); Cp' = Cp*, L2= dppe (3)]. Proto-desilylation of 2 and 3 have given unsubstituted buta-1,3-diyn-1-yl complexes Ru(C triple bond CC triple bond CH)(L2)Cp'[Cp'= Cp, L = PPh3 (5); Cp'= Cp*, L2 = dppe (6)]. Replacement of H in 5 or 6 with Au(PR3) groups was achieved in reactions with AuCl(PR3) in the presence of KN(SiMe3)2 to give Ru(C triple bond CC triple bond CAu(PR3)](L2)Cp'[Cp' = Cp, L = PPh3, R = Ph (7); Cp' = Cp*, L2= dppe, R = Ph (8), tol (9)]. The asymmetrically end-capped [Cp(Ph3P)2Ru]C triple bond CC triple bond C[Ru(dppe)Cp*] (10) was obtained from Ru(C triple bond CC triple bond CH)(dppe)Cp* and RuCl(PPh3)2Cp. Single-crystal X-ray structural determinations of and are reported, with a comparative determination of the structure of Fe(C triple bond CC triple bond CSiMe3)(dppe)Cp* (4), and those of a fifth polymorph of [Ru(PPh3)2Cp]2(mu-C triple bond CC triple bond C) (12), and [Ru(dppe)Cp]2(mu-C triple bond CC triple bond C) (13).  相似文献   

6.
Reactions of the anionic gallium(i) heterocycle, [:Ga{[N(Ar)C(H)](2)}](-) (Ar = C(6)H(3)Pr(i)(2)-2,6), with a variety of mono- and bidentate phosphine, tmeda and 1,5-cyclooctadiene (COD) complexes of group 10 metal dichlorides are reported. In most cases, salt elimination occurs, affording either mono(gallyl) complexes, trans-[MCl{Ga{[N(Ar)C(H)](2)}}(PEt(3))(2)] (M = Ni or Pd) and cis-[PtCl{Ga{[N(Ar)C(H)](2)}}(L)] (L = R(2)PCH(2)CH(2)PR(2), R = Ph (dppe) or cyclohexyl (dcpe)), or bis(gallyl) complexes, trans-[M{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)] (M = Ni, Pd or Pt), cis-[Pt{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)], cis-[M{Ga{[N(Ar)C(H)](2)}}(2)(L)] (M = Ni, Pd or Pt; L = dppe, Ph(2)CH(2)PPh(2) (dppm), tmeda or COD). The crystallographic and spectroscopic data for the complexes show that the trans-influence of the gallium(i) heterocycle lies in the series, B(OR)(2) > H(-) > PR(3) approximately [:Ga{[N(Ar)C(H)](2)}](-) > Cl(-). Comparisons between the reactivity of one complex, [Pt{Ga{[N(Ar)C(H)](2)}}(2)(dppe)], with that of closely related platinum bis(boryl) complexes indicate that the gallyl complex is not effective for the catalytic or stoichiometric gallylation of alkenes or alkynes. The phosphaalkyne, Bu(t)C[triple bond, length as m-dash]P, does, however, insert into one gallyl ligand of the complex, leading to the novel, crystallographically characterised P,N-gallyl complex, [Pt{Ga{[N(Ar)C(H)](2)}}{Ga{PC(Bu(t))C(H)[N(Ar)]C(H)N(Ar)}}(dppe)]. An investigation into the mechanism of this insertion reaction has been undertaken.  相似文献   

7.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

8.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

9.
Wong KM  Tang WS  Lu XX  Zhu N  Yam VW 《Inorganic chemistry》2005,44(5):1492-1498
A series of platinum(II) terpyridyl alkynyl complexes that have been derivatized with basic amino functionalities, [Pt(tpy)(C[triple bond]C-C6H4-NR2-4]X (X = OTf-, R = CH3 1, R = CH2CH2OCH3 2, R = H 3; X = Cl-, R = CH3 4, R = CH2CH2OCH3 5, R = H 6) (tpy = 2,2':6',2' '-terpyridine), have been synthesized and characterized. Their photophysical responses at various acid concentrations were studied. The abilities of the complexes to function as colorimetric and luminescence pH sensors were demonstrated with dramatic color changes and luminescence enhancement upon introduction of acid.  相似文献   

10.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

11.
Optical power limiting and luminescence properties of two Pt(II) complexes with thiophenyl and phenyl groups in the ligands, trans-Pt(P(n-Bu)3)2(C[triple bond]C-Ar)2, where Ar = -C4H2S-C[triple bond]C-p-C6H4-n-C5H11 (1) and -p-C6H4-C[triple bond]C-C4H3S (2), have been investigated. The fluorescence lifetimes were found to be on the sub-nanosecond time scale, and the quantum yields were low, in accord with fast intersystem crossing from the excited singlet to triplet manifold. The phosphorescence lifetimes of 1 and 2 were shorter than that of a Pt(II) complex having two phenyl groups in the ligands. In order to elucidate the C-Pt bonding nature in the ground state, the 13C NMR chemical shift of the carbon directly bonded to Pt, the coupling constants 1JPtC, 2JPtC, and 1JPtP, and IR nuC[triple bond]C wavenumbers were obtained for 1, 2, and three other trans-diarylalkynyl Pt(II) complexes. X-ray diffraction data of 1 and 2 and density functional theory calculated geometries of models of 1, 2, and trans-Pt(P(n-Bu)3)2(C[triple bond]C-p-C6H4-C[triple bond]C-C6H5)2 (3) show that 1 preferably exists in a different conformation from that of 2 and 3. The variations in photophysical, NMR, and IR data can be rationalized by differences in geometry and pi-backbonding from Pt to the alkynyl ligand.  相似文献   

12.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

13.
The synthesis and structural, photophysical, electrochemical, and electroluminescent properties of a class of platinum(II) complexes bearing sigma-alkynyl ancillary ligands, namely [(C/N/N)Pt(C[triple bond]C]nR] [H(C/N/N) = 6-aryl-2,2'-bipyridine; n = 1-4; R = aryl, alkyl, or trimethylsilyl], have been studied. Substituents with different steric and electronic properties were introduced into the tridentate cyclometalating and arylacetylide ligands, and the pi-conjugation length of the oligoynyl moiety was homologously extended from ethynyl to octatetraynyl. The X-ray crystal structures of several derivatives confirm the Pt-(CC) ligation and reveal various intermolecular interactions, such as pi-pi, Pt...Pt, and C-H...F-C. The complexes display good thermal stability and intense phosphorescence in fluid and glassy solutions with high quantum yields and microsecond lifetimes. Their emission energies are sensitive to solvent polarity, the electronic affinities of the substituents on both the cyclometalating and arylacetylide groups, and the length of the oligoynyl ligand. By choosing appropriate cyclometalating and sigma-alkynyl ligands, the emission color of this class of platinum(II) complexes can be tuned from green-yellow to saturated red. In addition to (3)MLCT [Pt(5d) --> pi*(C/N/N)] and (3)IL(C/N/N), intriguing (3)IL(alkynyl) excited states localized on -(C[triple bond]C)(4)- and -(C[triple bond]Cpyrenyl-1) moieties that afford narrow-bandwidth emissions have been observed. Selected Pt(II) complexes were doped into the emissive region of multilayer, vapor-deposited organic light-emitting diodes. The tunable electrophosphorescence energy resembles that recorded in fluid solutions for these emitters, and the devices exhibit high luminance and efficiencies (up to 4.2 cd A(-1)).  相似文献   

14.
A series of luminescent branched platinum(II) alkynyl complexes, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]C-C6H4C[triple bond]C}3C6H3] (R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, C6H4SAc, 1-napthyl (Np), 1-pyrenyl (Pyr), 1-anthryl-8-ethynyl (HC[triple bond]CAn)), [1,3-{PyrC[triple chemical bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], and [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], was successfully synthesized by using the precursors [1,3,5-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] or [1,3-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3]. The X-ray crystal structures of [1,3,5-{MeOC6H4C[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An] have been determined. These complexes were found to show long-lived emission in both solution and solid-state phases at room temperature. The emission origin of the branched complexes [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, and C6H4SAc was tentatively assigned to be derived from triplet states of predominantly intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(C[triple bond]CR)) character, while the emission origin of the branched complexes with polyaromatic alkynyl ligands, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=Np, Pyr, or HC[triple bond]CAn, [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An], was tentatively assigned to be derived from the predominantly 3IL states of the respective polyaromatic alkynyl ligands, mixed with some 3MLCT (d(pi)(Pt)-->pi*(C[triple bond]CR)) character. By incorporating different alkynyl ligands into the periphery of these branched complexes, one could readily tune the nature of the lowest energy emissive state and the direction of the excitation energy transfer.  相似文献   

15.
2-Halophenyl ketones 1a-e (1a, o-IC(6)H(4)COCH(3)) undergo carbocyclization with alkyl propiolates (2a, CH(3)(CH(2))(4)C[triple bond]CCO(2)CH(3); 2b, TMSC[triple bond]CCO(2)Et 2c, CH(3)C[triple bond]CCO(2)CH(3); 2d, CH(3)OCH(2)C[triple bond]CCO(2)CH(3); 2e, CH(3)(CH(2))(3)C[triple bond]CCO(2)CH(3); 2f, PhC[triple bond]CCO(2)CH(3); and 2g, (CH(3))(3)C[triple bond]CCO(2)CH(3)) in the presence of Ni(dppe)Br(2) and zinc powder in acetonitrile at 80 degrees C to afford the corresponding indenol derivatives 3a-m with remarkable regioselectivity in good to excellent yields. The nickel-catalyzed carbocyclization reaction was successfully extended to other simple disubstituted alkynes. Thus, the reaction of 2-halophenyl ketones 1a-e with disubstituted alkynes (2h, PhC[triple bond]CPh; 2i, CH(3)C(6)H(4)C[triple bond]CC(6)H(4)CH(3); 2j, CH(3)CH(2)C[triple bond]CCH(2)CH(3); 2k, PhC[triple bond]CCH(3); 2l, TMSC[triple bond]CCH(3); and 2m, PhC[triple bond]C(CH(2))(3)CH(3)) proceeded smoothly to afford the corresponding indenols 4a-t in good to excellent yields. For unsymmetrical alkynes 2k-m, the carbocyclization gave two regioisomers with regioselectivities ranging from 1:2 to 1:12 depending on the substituents on the alkyne and on the aromatic ring of halophenyl ketone. A possible mechanism for this nickel-catalyzed carbocyclization reaction is also proposed.  相似文献   

16.
A series of platinum(II) terpyridyl complexes [Pt(tpy)(C triple bond C-C triple bond CH)]X, 1-X (X=OTf-; PF6-; ClO4-; BF4-; BPh4-); [Pt(tpy)(C triple bond CC6H5)]X, 2-X (X=OTf-; PF6-; ClO4-; BF4-); [Pt(tpy)(C triple bond CC6H4OCH3-4)]OTf, 3-OTf, and [Pt(4'-CH3O-tpy)(C triple bond CC6H5)]OTf, 4-OTf (tpy=2,2':6',2'-terpyridine, OTf=trifluoromethanesulfonate) were synthesized and their photophysical properties determined. Electronic absorption and emission studies showed the formation of a new band upon increasing the diethyl ether content in an acetonitrile/diethyl ether mixture. This was ascribed to the formation of complex aggregates, the solution color of which is dependent on the nature of the anions. This indicates that counter ions play an important role in governing the degree of aggregation and the extent of interactions within these aggregates. Addition of various anions to solutions of 1-OTf and 1-PF6 produced anion-induced color changes upon solvent-induced aggregation, indicating that these complexes may serve as potential colorimetric anion probes.  相似文献   

17.
A novel series of [PtTl(2)(C[triple chemical bond]CR)(4)](n) (n = 2, R = 4-CH(3)C(6)H(4) (Tol) 1, 1-naphthyl (Np) 2; n = infinity, R = 4-CF(3)C(6)H(4) (Tol(F)) 3) complexes has been synthesized by neutralization reactions between the previously reported [Pt(C[triple chemical bond]CR)(4)](2-) (R = Tol, Tol(F)) or novel (NBu(4))(2)[Pt(C[triple chemical bond]CNp)(4)] platinum precursors and Tl(I) (TlNO(3) or TlPF(6)). The crystal structures of [Pt(2)Tl(4)(C[triple chemical bond]CTol)(8)]4 acetone, 14 acetone, [Pt(2)Tl(4)(C[triple chemical bond]CNp)(8)]3 acetone1/3 H(2)O, 23 acetone 1/3 H(2)O and [[PtTl(2)(C[triple chemical bond]CTol(F))(4)](acetone)S](infinity) (S = acetone 3 a; dioxane 3 b) have been solved by X-ray diffraction studies. Interestingly, whereas in the tolyl (1) and naphthyl (2) derivatives, the thallium centers exhibit a bonding preference for the electron-rich alkyne entities to yield crystal lattices based on sandwich hexanuclear [Pt(2)Tl(4)(C[triple chemical bond]CR)(8)] clusters (with additional Tlacetone (1) or Tlnaphthyl (2) secondary interactions), in the C(6)H(4)CF(3) (Tol(F)) derivatives 3 a and 3 b the basic Pt(II) center forms two unsupported Pt-Tl bonds. As a consequence 3 a and 3 b form an extended columnar structure based on trimetallic slipped PtTl(2)(C[triple chemical bond]CTol(F))(4) units that are connected through secondary Tl(eta(2)-acetylenic) interactions. The luminescent properties of these complexes, which in solution (blue; CH(2)Cl(2) 1,2; acetone 3) are very different to those in solid state (orange), have been studied. Curiously, solid-state emission from 1 is dependent on the presence of acetone (green) and its crystallinity. On the other hand, while a powder sample of 3 is pale yellow and displays blue (457 nm) and orange (611 nm) emissions, the corresponding pellets (KBr, solid) of 3, or the fine powder obtained by grinding, are orange and only exhibit a very intense orange emission (590 nm).  相似文献   

18.
The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.  相似文献   

19.
This work describes the synthesis of cis-[Pt(C[triple bond]CPh)2(Hdmpz)2] (1) and its use as a precursor for the preparation of homo- and heteropolynuclear complexes. Double deprotonation of compound 1 with readily available M(I) (M = Cu, Ag, Au) or M(II) (M = Pd, Pt) species affords the discrete hexanuclear clusters [{PtM2(mu-C[triple bond]CPh)2(mu-dmpz)(2)}(2)] [M = Cu (2), Ag (3), Au (4)], in which both "Pt(C[triple bond]CPh)2(dmpz)(2)" fragments are connected by four d(10) metal centers, and are stabilized by alkynyl and dimethylpyrazolate bridging ligands, or the trinuclear complexes [Pt(mu-C[triple bond]CPh)2(mu-dmpz)(2){M(C/\P)}2] (M = Pd (5), Pt (6); C/\P = CH(2)-C(6)H(4)-P(o-tolyl)2-kappaC,P), respectively. The X-ray structures of complexes 1-4 and 6 are reported. The X-ray structure of the platinum-copper derivative 2 shows that all copper centers exhibit similar local geometry being linearly coordinated to a nitrogen atom and eta(2) to one alkynyl fragment. However in the related platinum-silver (3) and platinum-gold (4) derivatives the silver and gold atoms present three different coordination environments. The complexes have been studied by absorption and emission spectroscopy. The hexanuclear complexes exhibit bright luminescence in the solid state and in fluid solution (except 4 in the solid state at 298 K). Dual long-lived emission is observed, being clearly resolved in low-temperature rigid media. The low-energy emission is ascribed to MLM'CT Pt(d)/pi(C[triple bond]CPh)-->Pt(p(z))/M'(sp)/pi*(C[triple bond]CPh) modified by metal-metal interactions whereas the high-energy emission is tentatively attributed to an emissive state derived from dimethylpyrazolate-to-metal (d(10)) LM'CT transitions pi(dmpz)-->M'(d(10)).  相似文献   

20.
A series of homoleptic and heteroleptic platinum(ii) complexes [Pt(C[triple bond, length as m-dash]CFc)(2)(L-L)] (L-L = COD , 1,1'-bis(diphenylphosphino)ferrocene (dppf) ), Q(2)[cis/trans-Pt(C(6)F(5))(2)(C[triple bond, length as m-dash]CFc)(2)] (cis, Q = PMePh(3), ; trans, Q = NBu(4), ), (NBu(4))[Pt(bzq)(C[triple bond, length as m-dash]CFc)(2)] (Hbzq = 7,8-benzoquinoline) and (NBu(4))(2)[Pt(C[triple bond, length as m-dash]CFc)(4)] has been synthesized and characterized spectroscopically and the structures of .2CHCl(3), and .2H(2)O.2CH(2)Cl(2) confirmed by single-crystal X-ray studies. The anion of complex , shows strong O-Hpi(C[triple bond, length as m-dash]C) interactions and weaker C-Clpi(C[triple bond, length as m-dash]C) contacts between the protons of two water and two CH(2)Cl(2) molecules and the C(alpha)[triple bond, length as m-dash]C(beta) of mutually cis alkynyl groups. In this complex the presence of additional O-HH-C(Cp) and C-ClH-C(Cp) contacts gives rise to an extended bidimensional network. The optical and electrochemical properties of all derivatives have been examined. It is remarkable that for complexes and a facile oxidatively induced coupling, giving rise to 1,4-diferrocenylbutadiyne, is observed, this also having been proven by chemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号