首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We develop optimal rank-based procedures for testing affine-invariant linear hypotheses on the parameters of a multivariate general linear model with elliptical VARMA errors. We propose a class of optimal procedures that are based either on residual (pseudo-)Mahalanobis signs and ranks, or on absolute interdirections and lift-interdirection ranks, i.e., on hyperplane-based signs and ranks. The Mahalanobis versions of these procedures are strictly affine-invariant, while the hyperplane-based ones are asymptotically affine-invariant. Both versions generalize the univariate signed rank procedures proposed by Hallin and Puri (J. Multivar. Anal. 50 (1994) 175), and are locally asymptotically most stringent under correctly specified radial densities. Their AREs with respect to Gaussian procedures are shown to be convex linear combinations of the AREs obtained in Hallin and Paindaveine (Ann. Statist. 30 (2002) 1103; Bernoulli 8 (2002) 787) for the pure location and purely serial models, respectively. The resulting test statistics are provided under closed form for several important particular cases, including multivariate Durbin-Watson tests, VARMA order identification tests, etc. The key technical result is a multivariate asymptotic linearity result proved in Hallin and Paindaveine (Asymptotic linearity of serial and nonserial multivariate signed rank statistics, submitted).  相似文献   

2.
This paper investigates the estimation of covariance matrices in multivariate mixed models. Some sufficient conditions are derived for a multivariate quadratic form and a linear combination of multivariate quadratic forms to be the BQUE (quadratic unbiased and severally minimum varianced) estimators of its expectations.  相似文献   

3.
In this paper, the noncentral matrix quadratic forms of the skew elliptical variables are studied. A family of the matrix variate noncentral generalized Dirichlet distributions is introduced as the extension of the noncentral Wishart distributions, the Dirichlet distributions and the noncentral generalized Dirichlet distributions. Main distributional properties are investigated. These include probability density and closure property under linear transformation and marginalization, the joint distribution of the sub-matrices of the matrix quadratic forms in the skew elliptical variables and the moment generating functions and Bartlett's decomposition of the matrix quadratic forms in the skew normal variables. Two versions of the noncentral Cochran's Theorem for the matrix variate skew normal distributions are obtained, providing sufficient and necessary conditions for the quadratic forms in the skew normal variables to have the matrix variate noncentral generalized Dirichlet distributions. Applications include the properties of the least squares estimation in multivariate linear model and the robustness property of the Wilk's likelihood ratio statistic in the family of the matrix variate skew elliptical distributions.  相似文献   

4.
A set of n-principal points of a distribution is defined as a set of n points that optimally represent the distribution in terms of mean squared distance. It provides an optimal n-point-approximation of the distribution. However, it is in general difficult to find a set of principal points of a multivariate distribution. Tarpey et al. [T. Tarpey, L. Li, B. Flury, Principal points and self-consistent points of elliptical distributions, Ann. Statist. 23 (1995) 103-112] established a theorem which states that any set of n-principal points of an elliptically symmetric distribution is in the linear subspace spanned by some principal eigenvectors of the covariance matrix. This theorem, called a “principal subspace theorem”, is a strong tool for the calculation of principal points. In practice, we often come across distributions consisting of several subgroups. Hence it is of interest to know whether the principal subspace theorem remains valid even under such complex distributions. In this paper, we define a multivariate location mixture model. A theorem is established that clarifies a linear subspace in which n-principal points exist.  相似文献   

5.
The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure.  相似文献   

6.
In this article, we consider the problem of testing a linear hypothesis in a multivariate linear regression model which includes the case of testing the equality of mean vectors of several multivariate normal populations with common covariance matrix Σ, the so-called multivariate analysis of variance or MANOVA problem. However, we have fewer observations than the dimension of the random vectors. Two tests are proposed and their asymptotic distributions under the hypothesis as well as under the alternatives are given under some mild conditions. A theoretical comparison of these powers is made.  相似文献   

7.
We investigate the properties of a class of discrete multivariate distributions whose univariate marginals have ordered categories, all the bivariate marginals, like in the Plackett distribution, have log-odds ratios which do not depend on cut points and all higher-order interactions are constrained to 0. We show that this class of distributions may be interpreted as a discretized version of a multivariate continuous distribution having univariate logistic marginals. Convenient features of this class relative to the class of ordered probit models (the discretized version of the multivariate normal) are highlighted. Relevant properties of this distribution like quadratic log-linear expansion, invariance to collapsing of adjacent categories, properties related to positive dependence, marginalization and conditioning are discussed briefly. When continuous explanatory variables are available, regression models may be fitted to relate the univariate logits (as in a proportional odds model) and the log-odds ratios to covariates.  相似文献   

8.
Linear and quadratic prediction problems in finite populations have become of great interest to many authors recently. In the present paper, we mainly aim to extend the problem of quadratic prediction from a general linear model, of form , to a multivariate linear model, denoted by with . Firstly, the optimal invariant quadratic unbiased (OIQU) predictor and the optimal invariant quadratic (potentially) biased (OIQB) predictor of for any particular symmetric nonnegative definite matrix satisfying are derived. Secondly, we consider predicting and . The corresponding restricted OIQU predictor and restricted OIQB predictor for them are given. In addition, we also offer four concluding remarks. One concerns the generalization of predicting and , and the others are concerned with three possible extensions from multivariate linear models to growth curve models, to restricted multivariate linear models, and to matrix elliptical linear models.  相似文献   

9.
This paper studies the existence of the uniformly minimum risk unbiased (UMRU) estimators of parameters in a class of linear models with an error vector having multivariate normal distribution or t-distribution, which include the growth curve model, the extended growth curve model, the seemingly unrelated regression equations model, the variance components model, and so on. The necessary and sufficient existence conditions are established for UMRU estimators of the estimable linear functions of regression coefficients under convex losses and matrix losses, respectively. Under the (extended) growth curve model and the seemingly unrelated regression equations model with normality assumption, the conclusions given in the literature can be derived by applying the general results in this paper. For the variance components model, the necessary and sufficient existence conditions are reduced as terse forms.  相似文献   

10.
We study a multivariate ultrastructural measurement error (MUME) model with more than one response variable. This model is a synthesis of multivariate functional and structural models. Three consistent estimators of regression coefficients, satisfying the exact linear restrictions have been proposed. Their asymptotic distributions are derived under the assumption of a non-normal measurement error and random error components. A simulation study is carried out to investigate the small sample properties of the estimators. The effect of departure from normality of the measurement errors on the estimators is assessed.  相似文献   

11.
Let Y be an n×p multivariate normal random matrix with general covariance ΣY and W be a symmetric matrix. In the present article, the property that a matrix quadratic form YWY is distributed as a difference of two independent (noncentral) Wishart random matrices is called the (noncentral) generalized Laplacianness (GL). Then a set of algebraic results are obtained which will give the necessary and sufficient conditions for the (noncentral) GL of a matrix quadratic form. Further, two extensions of Cochran’s theorem concerning the (noncentral) GL and independence of a family of matrix quadratic forms are developed.  相似文献   

12.
A new class of multivariate skew-normal distributions, fundamental skew-normal distributions and their canonical version, is developed. It contains the product of independent univariate skew-normal distributions as a special case. Stochastic representations and other main properties of the associated distribution theory of linear and quadratic forms are considered. A unified procedure for extending this class to other families of skew distributions such as the fundamental skew-symmetric, fundamental skew-elliptical, and fundamental skew-spherical class of distributions is also discussed.  相似文献   

13.
We investigate depth notions for general models which are derived via the likelihood principle. We show that the so-called likelihood depth for regression in generalized linear models coincides with the regression depth of Rousseeuw and Hubert (J. Amer. Statist. Assoc. 94 (1999) 388) if the dependent observations are appropriately transformed. For deriving tests, the likelihood depth is extended to simplicial likelihood depth. The simplicial likelihood depth is always a U-statistic which is in some cases not degenerated. Since the U-statistic is degenerated in the most cases, we demonstrate that nevertheless the asymptotic distribution of the simplicial likelihood depth and thus asymptotic α-level tests for general types of hypotheses can be derived. The tests are distribution-free. We work out the method for linear and quadratic regression.  相似文献   

14.
Notions of linear sufficiency and quadratic sufficiency are of interest to some authors. In this paper, the problem of nonnegative quadratic estimation for βHβ+hσ2 is discussed in a general linear model and its transformed model. The notion of quadratic sufficiency is considered in the sense of generality, and the corresponding necessary and sufficient conditions for the transformation to be quadratically sufficient are investigated. As a direct consequence, the result on (ordinary) quadratic sufficiency is obtained. In addition, we pose a practical problem and extend a special situation to the multivariate case. Moreover, a simulated example is conducted, and applications to a model with compound symmetric covariance matrix are given. Finally, we derive a remark which indicates that our main results could be extended further to the quasi-normal case.  相似文献   

15.
We propose a class of robust estimates for multivariate linear models. Based on the approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients and the covariance matrix of the errors simultaneously. These estimates have both a high breakdown point and high asymptotic efficiency under Gaussian errors. We prove consistency and asymptotic normality assuming errors with an elliptical distribution. We describe an iterative algorithm for the numerical calculation of these estimates. The advantages of the proposed estimates over their competitors are demonstrated through both simulated and real data.  相似文献   

16.
The purpose of this paper is, in multivariate linear regression model (Part I) and GMANOVA model (Part II), to investigate the effect of nonnormality upon the nonnull distributions of some multivariate test statistics under normality. It is shown that whatever the underlying distributions, the difference of local powers up to order N−1 after either Bartlett’s type adjustment or Cornish-Fisher’s type size adjustment under nonnormality coincides with that in Anderson [An Introduction to Multivariate Statistical Analysis, 2nd ed. and 3rd ed., Wiley, New York, 1984, 2003] under normality. The derivation of asymptotic expansions is based on the differential operator associated with the multivariate linear regression model under general distributions. The performance of higher-order results in finite samples, including monotone Bartlett’s type adjustment and monotone Cornish-Fisher’s type size adjustment, is examined using simulation studies.  相似文献   

17.
The problem of estimating the precision matrix of a multivariate normal distribution model is considered with respect to a quadratic loss function. A number of covariance estimators originally intended for a variety of loss functions are adapted so as to obtain alternative estimators of the precision matrix. It is shown that the alternative estimators have analytically smaller risks than the unbiased estimator of the precision matrix. Through numerical studies of risk values, it is shown that the new estimators have substantial reduction in risk. In addition, we consider the problem of the estimation of discriminant coefficients, which arises in linear discriminant analysis when Fisher's linear discriminant function is viewed as the posterior log-odds under the assumption that two classes differ in mean but have a common covariance matrix. The above method is also adapted for this problem in order to obtain improved estimators of the discriminant coefficients under the quadratic loss function. Furthermore, a numerical study is undertaken to compare the properties of a collection of alternatives to the “unbiased” estimator of the discriminant coefficients.  相似文献   

18.
This paper deals with the bias reduction of Akaike information criterion (AIC) for selecting variables in multivariate normal linear regression models when the true distribution of observation is an unknown nonnormal distribution. We propose a corrected version of AIC which is partially constructed by the jackknife method and is adjusted to the exact unbiased estimator of the risk when the candidate model includes the true model. It is pointed out that the influence of nonnormality in the bias of our criterion is smaller than the ones in AIC and TIC. We verify that our criterion is better than the AIC, TIC and EIC by conducting numerical experiments.  相似文献   

19.
This paper is concerned with the conditional bias and variance of local quadratic regression to the multivariate predictor variables. Data sharpening methods of nonparametric regression were first proposed by Choi, Hall, Roussion. Recently, a data sharpening estimator of local linear regression was discussed by Naito and Yoshizaki. In this paper, to improve mainly the fitting precision, we extend their results on the asymptotic bias and variance. Using the data sharpening estimator of multivariate local quadratic regression, we are able to derive higher fitting precision. In particular, our approach is simple to implement, since it has an explicit form, and is convenient when analyzing the asymptotic conditional bias and variance of the estimator at the interior and boundary points of the support of the density function.  相似文献   

20.
This paper studies improvements of multivariate local linear regression. Two intuitively appealing variance reduction techniques are proposed. They both yield estimators that retain the same asymptotic conditional bias as the multivariate local linear estimator and have smaller asymptotic conditional variances. The estimators are further examined in aspects of bandwidth selection, asymptotic relative efficiency and implementation. Their asymptotic relative efficiencies with respect to the multivariate local linear estimator are very attractive and increase exponentially as the number of covariates increases. Data-driven bandwidth selection procedures for the new estimators are straightforward given those for local linear regression. Since the proposed estimators each has a simple form, implementation is easy and requires much less or about the same amount of effort. In addition, boundary corrections are automatic as in the usual multivariate local linear regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号