首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Coherent terahertz pulses have been generated at a range of 236.3-1104.5 μm (0.27-1.3 THz) by one CO2 laser with dual-wavelength output based on collinearly phase-matched different frequency generation (DFG) in a GaSe crystal. This source has the advantages of compact and simplicity for tuning. The output power of the THz pulse and phase-matching conditions were investigated. The maximum single pulse energy of 11 nJ was generated at a frequency of 1.23 THz (243.6 μm), corresponding to a peak output power 182 mW.  相似文献   

2.
Zhao P  Ragam S  Ding YJ  Zotova IB 《Optics letters》2010,35(23):3979-3981
We have demonstrated a compact and portable terahertz (THz) source, based on difference-frequency generation in a GaSe crystal. The two input frequencies, required for achieving frequency mixing, are generated by a single Q-switched Nd:YLF laser incorporating two laser resonators. The average power of the THz output reaches 1 μW at 1.64 THz (182 μm) within a linewidth of 65 GHz. Such a THz source can be packaged into a compact and portable system.  相似文献   

3.
根据光整流效应,利用超快激光脉冲泵浦GaSe晶体实现了0.2~2.5 THz的宽带太赫兹辐射输出。禁带中的电子在两个800 nm光子的作用下激发到导带中形成自由载流子,进而吸收所产生的太赫兹辐射,最终导致太赫兹的输出随泵浦功率的增加而趋于饱和。为了研究双光子吸收对太赫兹输出的影响,测量了800 nm处的GaSe晶体的双光子吸收系数,结果为 0.165 cm/GW。通过对太赫兹输出实验数据的拟合,得到GaSe晶体中自由载流子对太赫兹输出的吸收截面为1×10-15 cm2。本文的研究结果可用于优化GaSe晶体在强激光泵浦下的太赫兹转换效率。  相似文献   

4.
We demonstrate the widely linear and broadband terahertz (THz) generation on GaSe:Te crystals by femtosecond laser pulses. It was found that the dopant, Te atoms, in GaSe crystals significantly enhances the efficiency of THz generation, and its central frequency can be tuned by varying the crystal thickness through non-phase-matched optical rectification. Moreover, the wide-ranging linearity for the optical-to-THz conversion and central-frequency-tunable THz generation promise for GaSe:Te crystals to be potential materials for high-power (>1.36 μW) THz applications.  相似文献   

5.
Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal   总被引:2,自引:0,他引:2  
Continuously tunable and coherent radiation in the wide range 56.8-1618 mum (0.18-5.27 THz) has been achieved as a novel and promising terahertz source based on collinear phase-matched difference frequency generation in a GaSe crystal. This source has the advantages of high coherence, simplicity for tuning, simple alignment, and stable output. The peak output power for the terahertz radiation reaches 69.4 W at a wavelength of 196 mum (1.53 THz), which corresponds to a photon conversion efficiency of 3.3%. A simple optimization of the design can yield a compact terahertz source.  相似文献   

6.
A compact, walk-off compensated dual-wavelength KTP OPO near the degenerate point of 2.128 μm pumped by a Nd:YAG pulsed laser is employed as the pump for terahertz (THz) source based on difference frequency generation (DFG) in a GaSe crystal. Coherent THz radiation that is continuously tunable in the range of 81-1617 μm (0.186-3.7 THz) is achieved. An enhancement of 76.7% in average for the THz energies at different wavelengths is realized using the walk-off compensated KTP OPO than the common one. Using a 8 mm-long GaSe crystal, the maximum output THz pulse energy is 48.9 nJ with the peak power of 11 W, corresponding to the energy conversion efficiency of 5.4 × 10− 6 and the photon conversion efficiency of about 0.09%.  相似文献   

7.
We study the energy scaling of terahertz(THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%.Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.  相似文献   

8.
We present a review of the development of a compact and high-power broadband terahertz (THz) source optically excited by a femtosecond photonic crystal fiber (PCF) amplifier.The large mode area of the PCF and the stretcher-free configuration make the pump source compact and very efficient.Broadband THz pulses of 150 μW extending from 0.1 to 3.5 THz are generated from a 3-mm-thick GaP crystal through optical rectification of 12-W pump pulses with duration of 66 fs and a repetition rate of 52 MHz.A strong saturation effect is observed,which is attributed to pump pulse absorption;a Z-scan measurement shows that three-photon absorption dominates the nonlinear absorption when the crystal is pumped by femtosecond pulses at 1 040 nm.A further scale-up of the THz source power is expected to find important applications in THz nonlinear optics and nonlinear THz spectroscopy.  相似文献   

9.
Following our measurements and analysis made on several GaSe crystals, we demonstrated that terahertz (THz) generation from ultrafast laser pulses can be developed into a sensitive technique for investigating symmetries of second-order nonlinear susceptibility tensor of a nonlinear crystal. Indeed, for GaSe crystals, both Kleinman's symmetry condition and spatial symmetry were violated due to the contribution of ionic displacement to nonlinear polarization and deviation of GaSe lattice from hexagonal symmetry. When the pump photon energy was increased from that below the bandgap of GaSe to that above it, the mechanism for the THz generation was switched from optical rectification to photocurrent surge.  相似文献   

10.
The frequency-domain mode comb of a Ti:sapphire femtosecond laser centered at 350 THz is broadened to 150 THz (full width at -30 dBc) by self-phase modulation in a single-mode optical fiber. By phase locking continuous-wave lasers to elements of the comb near 1064 and 778 nm, we measure the 104-THz frequency gap between these two lasers with a relative uncertainty of 2.7 x 10(-11) in 1 s.  相似文献   

11.
Y. J. Ding  W. Shi 《Laser Physics》2006,16(4):562-570
We review our up-to-date result on the development of widely tunable monochromatic THz sources, implemented based on difference-frequency generation (DFG) in GaSe, ZnGeP2, and GaP. Using a GaSe crystal, the output wavelength was tuned in the range from 66.5 μm to 5664 μm (from 150 cm?1 to 1.77 cm?1) with the highest peak power 389 W. This tuning range is the widest ever produced for a continuously tunable and coherent tabletop THz source. Moreover, the conversion efficiency 0.1% is also the highest ever achieved for a tabletop system. On the other hand, based on DFG in a ZnGeP2 crystal, the output wavelength was tuned in the ranges 83.1–1642 μm and 80.2–1416 μm for two phase-matching configurations. The output power has reached 134 W so far. Finally, using a GaP crystal, the output wavelength was tuned in the range 71.1–2830 μm, whereas the highest peak power was 15.6 W. The advantage of using GaP over GaSe and ZnGeP2 is that crystal rotation is no longer required for wavelength tuning. Instead, one just needs to tune the wavelength of one mixing beam within the bandwidth of as narrow as 15.3 nm.  相似文献   

12.
In this paper, a continuously tunable terahertz (THz) source is obtained using a compact intracavity pumped dual-wavelength optical parametric oscillation operating around 2.1 μm as difference-frequency generation pump source. The tuning range of the THz-wave frequency covers from 0.147 THz to 3.651 THz. Based on the collinear difference-frequency generation in the GaSe crystal, the experiment result shows that our schematic is a good option to construct a compact and portable terahertz source with widely tunable range.  相似文献   

13.
We constructed optical-fiber-based THz time-domain spectrometers (THz TDSs) with standard single-mode fibers (SSMFs) and large-mode-area photonic crystal fibers (LMA PCFs) and compared those to THz waves and spectra. The optical fibers are used for guiding optical pulses from ultra-fast lasers to a THz emitter and detector. The LMA-PCF-based THz TDS exhibits increased bandwidth from 1 to 2 THz and increased field amplitude by a factor of four compared with the SSMF-based THz TDS under the relatively higher excitation power of ultra-fast lasers. This improvement results from LMA PCFs that are suitable for high-power transmission without introducing nonlinear effects. We also fabricated compact THz emitter and detector module heads, which are connected with LMA PCFs. The LMA-PCF-based THz TDS had THz radiation power and bandwidth comparable with those obtained by a conventional THz TDS with a free-space optical arrangement. PACS 42.72.Ai; 42.65.-k; 42.81.DP  相似文献   

14.
Spectroscopic and lasing properties of c-cut Nd-doped Nd:Gd0.7Y0.3VO4, Nd:YVO4, and Nd:GdVO4 crystals were investigated. Spectral tuning from 1062 to 1067 nm was demonstrated. CW, Q-switching and mode-locking regimes for two-color laser operations were realized. A novel THz source based on Q-switch two-color diode-pumped solid state c-cut Nd:GdVO4 laser with Filter Lio as selective element and the GaSe nonlinear optical crystals as convertor was demonstrated. Terahertz radiation with wavelength 436 mm (0.56 THz) was detected. One picosecond laser pulses in mode-locking diode pumped c-cut vanadat lasers with a Kerr-lens and PbS-doped glasses as saturable absorbers are observed.  相似文献   

15.
Conversion of high-power 15-fs visible pulses to the mid infrared   总被引:1,自引:0,他引:1  
We measure the efficiency of converting high-power 15-fs 0.8-mum pulses to the mid infrared in GaAs and GaSe as well as the pulse duration and the spectrum of the infrared radiation that is produced. Free-carrier production limits the conversion efficiency in GaAs to approximately 5x10(-7) , allowing us to produce 2.5-pJ, 30-fs pulses spanning the spectral range from 6 to 14 mum . In GaSe we obtain, in a moderately saturated regime, a conversion efficiency of 7.5x10(-5) , limited by two-photon absorption, allowing us to produce pulses of 100-fs duration containing 10 nJ of energy.  相似文献   

16.
Shi W  Ding YJ 《Optics letters》2005,30(14):1861-1863
We have observed a backward-propagating terahertz wave by mixing two coherent infrared beams in two GaSe crystals. For the 47 mm long crystal, the output wavelength can be tuned in the wide range of 167.6 to 2060 microm (0.146 to 1.79 THz), whereas the output peak power reaches 217 W. The corresponding power conversion efficiency is approximately 0.03%.  相似文献   

17.
黄楠  李雪峰  刘红军  夏彩鹏 《物理学报》2009,58(12):8326-8331
数值模拟并分析了以GaSe晶体为例对光学差频产生太赫兹(THz)波的特性.结果表明:当THz波长为227.5 μm,晶体长度为26.3 mm时,产生THz波功率达到增益饱和,在增益饱和点输出最高峰值功率可以达到945 W.由于晶体吸收的影响,THz波的增益饱和区是输出功率的非稳定区,而THz波的输出稳定区位于增益饱和区之后,在稳定区的THz波稳定性取决于抽运光的稳定性.当THz波波长为227.5 μm时,达到稳定区所需晶体长度为37.9 mm,此时THz波输出峰值功率可以达到735 W. 关键词: 光学差频 太赫兹辐射 稳定性  相似文献   

18.
王海艳  赵国忠  王新强 《物理学报》2011,60(4):43202-043202
研究了窄带隙材料InAs和三种不同掺杂浓度的InN在不同抽运光强激发下产生太赫兹(THz)波的辐射特性.实验结果表明:在相同的抽运光强下,InN和InAs辐射的THz信号强度在同一量级,InAs较InN辐射效率要高一些.随着抽运光强的增大,这几种材料的发射光谱变得更宽,当抽运光增大到一定强度时,它们的发射光谱半极大值全宽(HMFW)趋于恒定.InN比InAs更容易在较低功率的抽运光作用下获得宽带太赫兹光谱.研究也表明,不同掺杂浓度对辐射THz波的强度及辐射效率有很大影响.这项研究对于探索半导体表面辐射太赫 关键词: InN InAs 太赫兹 抽运光强  相似文献   

19.
We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.  相似文献   

20.
Recently the possibility of scaling up the energy of sub-ps THz pulses generated in lithium-niobate by tilted pulse front excitation was demonstrated. Using 500 μJ energy pump pulses at 780 nm center wavelength, we achieved THz pulses with energy up to 240 nJ. In this article, results of calculations using a simple model predict the possibility of increasing the THz pulse energy above 1 μJ and the quantum efficiency up to 50% by decreasing the temperature. The dependence of the THz pulse energy and the maximum achievable electric field on the crystal length and the pump pulse duration is also presented. According to the calculations, generation of the maximum THz energy needs a specific pump pulse duration, because of increasing dispersion and absorption with increasing frequency. Not only longer, but also shorter pulses lead to a degradation of the THz energy. Results of calculations for GaSe, GaP and ZnTe are also presented. PACS 07.57.Hm; 42.65.Ky; 42.79.Nv  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号