首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

2.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

3.
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order M?ller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.  相似文献   

4.
A polarizable model potential (PMP) function for adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) is developed on the basis of ab initio molecular orbital calculations at the MP2/6-31+G* level. The PMP function consists of Coulomb, van der Waals, and polarization terms. The permanent atomic charges of the Coulomb term are determined by using electrostatic potential (ESP) optimization. The multicenter polarizabilities of the polarization term are determined by using polarized one-electron potential (POP) optimization in which the electron density changes induced by a test charge are target. Isotropic and anisotropic polarizabilities are adopted as the multicenter polarizabilities. In the PMP calculations using the optimized parameters, the interaction energies of Watson-Crick type A-T and C-G base pairs were -15.6 and -29.4 kcal/mol, respectively. The interaction energy of Hoogsteen type A-T base pair was -17.8 kcal/mol. These results reproduce well the quantum chemistry calculations at the MP2/6-311++G(3df,2pd) level within the differences of 0.6 kcal/mol. The stacking energies of A-T and C-G were -9.7 and -10.9 kcal/mol. These reproduce well the calculation results at the MP2/6-311++G (2d,2p) level within the differences of 1.3 kcal/mol. The potential energy surfaces of the system in which a sodium ion or a chloride ion is adjacent to the nucleic acid base are calculated. The interaction energies of the PMP function reproduced well the calculation results at the MP2/6-31+G* or MP2/6-311++G(2d,2p) level. The reason why the PMP function reproduces well the high-level quantum mechanical interaction energies is addressed from the viewpoint of each energy terms.  相似文献   

5.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

6.
X-Cl...H-Y interactions are analyzed by applying ab initio methods as well as the Bader theory. All calculations were performed using Pople's basis sets (6-311++G(2df,2pd) and 6-311++G(3df,3pd)) as well as the Dunning-type bases (aug-cc-pVDZ and aug-cc-pVTZ) within the MP2 method. For the complexes analyzed here, X-Cl and H-Y may be treated as a Lewis acid and a Lewis base, respectively. The Cl...H interactions are rather weak or at most moderate since, for the strongest interaction of the F3...HLi complex, the binding energy calculated at the MP2/6-311++G(3df,3pd) level of approximation amounts to -3.4 kcal/mol, and the H...Cl distance is equal to 2.65 A, less than the corresponding sum of van der Waals radii. These interactions may be classified as halogen-hydride interactions. However, some of the complexes analyzed, especially F3SiCl...HBeF and F3SiCl...HBeF, are very weakly bound, probably by typical van der Waals interactions.  相似文献   

7.
The binding energy spectra (BES) of valence shells of CH2BrCl and CF2BrCl have been measured at a series of different azimuthal angles by an (e, 2e) electron momentum spectrometer employing noncoplanar symmetric geometry at an impact energy of 1200 eV plus binding energy. The experimental momentum profiles (XMPs) are extracted from the sequential BES and compared with the theoretical ones calculated by using Hartree-Fock (HF) and density functional theory (DFT-B3LYP) calculations with 6-311G, 6-311++G**, and aug-cc-pVTZ basis sets. In general, the DFT-B3LYP calculations using the larger basis sets 6-311++G** and aug-cc-pVTZ describe the XMPs well for both molecules. Moreover, the pole strengths of main ionizations from the inner valence orbitals 2a', 3a', and 1a' of CH2BrCl are determined, and the controversial ordering of two outer valence orbitals 3a' ' and 6a' of CF2BrCl has also been assigned unambiguously.  相似文献   

8.
Boronic acids are widely used in materials science, pharmacology, and the synthesis of biologically active compounds. In this Article, geometrical structures and relative energies of dimers of boroglycine, H2N-CH2-B(OH)2, and its constitutional isomer H3C-NH-B(OH)2, were computed using second-order M?ller-Plesset perturbation theory and density functional theory; Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the MP2 calculations, and the Pople 6-311++G(d,p) basis set was employed for a majority of the DFT calculations. Effects of an aqueous environment were incorporated into the results using PCM and COSMO-RS methodology. The lowest-energy conformer of the H2N-CH2-B(OH)2 dimer was a six-membered ring structure (chair conformation; Ci symmetry) with two intermolecular B:N dative-bonds; it was 14.0 kcal/mol lower in energy at the MP2/aug-cc-pVDZ computational level than a conformer with the classic eight-centered ring structure (Ci symmetry) in which the boroglycine monomers are linked by a pair of H-O...H bonds. Compared to the results of MP2 calculations with correlation-consistent basis sets, DFT calculations using the PBE1PBE and TPSS functionals with the 6-311++G(d,p) basis set were significantly better at predicting relative conformational energies of the H2N-CH2-B(OH)2 and H3C-NH-B(OH)2 dimers than corresponding calculations using the BLYP, B3LYP, OLYP, and O3LYP functionals, particularly with respect to dative-bonded structures.  相似文献   

9.
The influence of various small- and medium-size basis sets used in Hartree-Fock (HF) and density functional theory (DFT)/B3LYP calculations on results of quantum theory of atoms in molecules based (QTAIM-based) analysis of bond parameters is investigated for several single, double, and triple covalent bonds. It is shown that, in general, HF and DFT/B3LYP methods give very similar QTAIM results with respect to the basis set. The smallest 6-31G basis set and DZ-quality basis sets of Dunning type lead to poor results in comparison to those obtained by the most reliable aug-cc-pVTZ. On the contrary, 6-311++G(2df,2pd) and in a somewhat lesser extent 6-311++G(3df,3pd) basis sets give satisfactory values of QTAIM parameters. It is also demonstrated that QTAIM calculations may be sensitive for the method and basis set in the case of multiple and more polarized bonds.  相似文献   

10.
The molecular geometry has been optimized without any constraints using different basis sets and levels of theory as: Hartree-Fock with basis sets 6–31+G**, 6–311++G**, cc-pVTZ and aug-cc-pVTZ, MP2 with basis sets 6–311++G** and cc-pVTZ, MP3 with basis set 6–311++G**, and density functional theory with basis sets 6–311++G** and cc-pVTZ. Small basis sets up to 6-31G predict the syn conformation of the methyl group to be the most stable conformation. Larger basis sets predict an unsymmetrical conformation with one of the H atoms perpendicular to the amide skeleton or an anti-like conformation. Dunnings correlation consistent polarized valence triple zeta, cc-pVTZ, basis set including MP2 predict two conformations, one perpendicular and one anti to be the most stable. The DFT calculations predict anti-like conformations. The most accurate calculations predict anti-like conformations which have not been predicted previously. The vibrational frequencies have been calculated for several basis sets and compared to the observed frequencies. The wagging frequency of the NH2 is very dependent on the basis sets and levels of theory. Most calculations predict a planar NH2 group in agreement with experiment. A scaled molecular force field has been determined by fitting the calculated frequencies to the observed ones for the perpendicular conformation using MP2/cc-pVTZ. The barrier heights for the methyl group have been calculated. The rotational constants, IA + IBIC values and dipole moments are compared with experimental values.  相似文献   

11.
12.
pi-pi Interaction in pyridine dimer and trimer has been investigated in different geometries and orientations at the ab initio (HF, MP2) and DFT (B3LYP) levels of theory using various basis sets (6-31G, 6-31G, 6-311++G) and corrected for basis set superposition error (BSSE). While the HF and DFT calculations show the pyridine dimer and the trimer to be unstable with respect to the monomer, the MP2 calculations show them to be clearly stable, thus emphasizing the need to include electron correlation while determining stacking interaction in such systems. The calculated MP2/6-311++G binding energy (100% BSSE corrected) of the parallel-sandwich, antiparallel-sandwich, parallel-displaced, antiparallel-displaced, T-up and T-down geometries for pyridine dimer are 1.53, 3.05, 2.39, 3.97, 1.91, 1.47 kcal/mol, respectively. The results show the antiparallel-displaced geometry to be the most stable. The binding energies for the trimer in parallel-sandwich, antiparallel-sandwich, and antiparallel-displaced geometry are found to be 3.18, 6.14, and 8.04 kcal/mol, respectively.  相似文献   

13.
 Using 6-31G and 6-311G basis sets to which diffuse and polarization functions were added in a stepwise fashion (a total of 16 basis sets), Hartree–Fock (HF), MP2 and B3LYP geometry optimizations were performed on biphenyl. With the MP2 method, diffuse functions raise the dihedral angle φ, for example, from 46.3° for 6-31G to 54.1° for 6-311++G, while polarization functions lower it, for example, from 54.1° for 6-311++G to 42.1° for 6-311++G(2d,2p). For a single set of polarization functions, φ(MP2) lies close to or above φ(HF) (44–47°), but for a double set it is below φ(HF) and is close to B3LYP values (38–42°) which show little basis set dependence. The most reliable value for φ, 42.1° [MP2/6-311++G(2d,2p)], is expected to increase slightly by adding more diffuse functions. The corresponding best calculated energy barrier at 0° (coplanar conformation) is 2.83 kcal/mol, much higher than the experimental estimate (1.4 ± 0.5 kcal/mol). The barrier at 90° is 1.82 kcal/mol, in line with the experimental estimate (1.6 ± 0.5 kcal/mol) and with previous theoretical results. Received: 9 September 2002 / Accepted: 15 November 2002 / Published online: 1 April 2003 Correspondence to: Friedrich Grein e-mail: fritz@unb.ca Acknowledgement. The author would like to thank NSERC (Canada) for financial support.  相似文献   

14.
The infrared spectra of the formic acid-water complexes isolated in argon matrices are reported. Both supersonic jet expansion and a conventional effusive source followed by trapping in solid argon at 10K are used to obtain the matrices. The experimental IR spectra are compared to the data obtained from high level ab initio (MP2) and DFT (B3LYP) calculations with 6-311++G(d,p) and aug-cc-pVTZ basis sets. The complex formation results in red shifts in the C=O and O-H stretching vibrations and a blue shift in the C-O stretching vibration of formic acid. The O-H stretching modes of water also exhibit pronounced red shifts. Both the MP2 and B3LYP calculations located three minima corresponding to cyclic HCOOH...H2O complexes with two hydrogen bond interactions. The binding energies are -10.3, -5.1, and -3.5 kcal mol(-1), respectively, for the three complexes at the MP2/ aug-cc-pVTZ level, corrected for the basis set superposition error (BSSE) using the Boys-Bernardi counterpoise scheme. Comparison of the calculated frequencies of the three complexes with the matrix IR spectrum reveals that the lowest energy complex is formed. In addition, a complex of formic acid with two water molecules is observed.  相似文献   

15.
Thermochemical properties of dimethyl tetraoxide (CH(3)OOOOCH(3)), the dimer of the methylperoxy radical, are studied using ab initio and density functional theory methods. Methylperoxy radicals are known to be important intermediates in the tropospheric ozone cycle, and the self-reaction of methylperoxy radicals, which is thought to proceed via dimethyl tetraoxide, leads to significant chain radical termination in this process. Dimethyl tetraoxide has five internal rotors, three of them unique; the potential energy profiles are calculated for these rotors, as well as for those in the CH(3)OO, CH(3)OOO, and CH(3)OOOO radicals. The dimethyl tetraoxide internal rotor profiles show barriers to rotation of 2-8 kcal mol(-1). Using B3LYP/6-31(d) geometries, frequencies, internal rotor potentials, and moments of inertia, we determine entropy and heat capacity values for dimethyl tetraoxide and its radicals. Isodesmic work reactions with the G3B3 and CBS-APNO methods are used; we calculate this enthalpy as -9.8 kcal mol(-1). Bond dissociation energies (BDEs) are calculated for all C-O and O-O bonds in dimethyl tetraoxide, again with the G3B3 and CBS-APNO theoretical methods, and we suggest the following BDEs: 46.0 kcal mol(-1) for CH(3)-OOOOCH(3), 20.0 kcal mol(-1) for CH(3)O-OOOCH(3), and 13.9 kcal mol(-1) for CH(3)OO-OOCH(3). From the BDE calculations and the isodesmic enthalpy of formation for dimethyl tetraoxide, we suggest enthalpies of 2.1, 5.8, and 1.4 kcal mol(-1) for the CH(3)OO, CH(3)OOO, and CH(3)OOOO radicals, respectively. We evaluate the suitability of 10 different density functional theory (DFT) methods for calculating thermochemical properties of dimethyl tetraoxide and its radicals with the 6-31G(d) and 6-311++G(3df,3pd) basis sets, using a variety of work reaction schemes. Overall, the best-performed DFT methods of those tested were TPSSh, BMK, and B1B95. Significant improvements in accuracy were made by moving from atomization to isodesmic work reactions, with most DFT methods yielding errors of less than 2 kcal mol(-1) with the 6-311++G(3df,3pd) basis set for isodesmic calculations on the dimethyl tetraoxide enthalpy. These isodesmic calculations were basis set consistent, with a considerable reduction in error found by using the 6-311++G(3df,3pd) basis set over the 6-31G(d) basis set. This was not the case, however, for atomization and bond dissociation work reactions, where the two basis sets returned similar results. Improved group additivity terms for the O-O-O moiety (O/O2 central atom group) are also determined.  相似文献   

16.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

17.
A protocol to generate parameters for the AMOEBA polarizable force field for small organic molecules has been established, and polarizable atomic typing utility, Poltype, which fully automates this process, has been implemented. For validation, we have compared with quantum mechanical calculations of molecular dipole moments, optimized geometry, electrostatic potential, and conformational energy for a variety of neutral and charged organic molecules, as well as dimer interaction energies of a set of amino acid side chain model compounds. Furthermore, parameters obtained in gas phase are substantiated in liquid-phase simulations. The hydration free energy (HFE) of neutral and charged molecules have been calculated and compared with experimental values. The RMS error for the HFE of neutral molecules is less than 1 kcal/mol. Meanwhile, the relative error in the predicted HFE of salts (cations and anions) is less than 3% with a correlation coefficient of 0.95. Overall, the performance of Poltype is satisfactory and provides a convenient utility for applications such as drug discovery. Further improvement can be achieved by the systematic study of various organic compounds, particularly ionic molecules, and refinement and expansion of the parameter database.  相似文献   

18.
We have calculated the intermolecular interaction potentials of the silane dimer at the D3d conformation using the Hartree-Fock (HF) self-consistent theory, the correlation-corrected second-order M?ller-Plesset (MP2) perturbation theory, and the density functional theory (DFT) with 108 functionals chosen from the combinations of 9 exchange and 12 correlation functionals. Single-point coupled cluster [CCSD(T)] calculations have also been carried out to calibrate the correlation effect. The HF calculations yield unbound potentials largely because of the exchange-repulsion interaction. In the MP2 calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater type orbitals fitted with Gaussian functions (STO-nG, n = 3 approximately 6), Pople's medium size basis sets [up to 6-311++G(3df,3pd)], to Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(3d,3p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy ( approximately 0.05 kcal/mol). Up to the largest basis set used, the asymptotic dispersion coefficient has not converged to the expected C6 value from molecular polarizability calculations. We attribute the slow convergence partly to the inefficacy of using the MP2 calculations with Gaussian type functions to model the asymptotic behavior. Both the basis set superposition error (BSSE) corrected and uncorrected results are presented to emphasize the importance of including such corrections. Only the BSSE corrected results systematically converge to the expected potential curve with increasing basis size. The DFT calculations generate a wide range of interaction patterns, from purely unbound to strongly bound, underestimating or overestimating the binding energy. The binding energies calculated using the OPTXHCTH147, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals and the equilibrium bond lengths calculated using the MPWHCTH93, TPSSHCTH, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals are close to the MP2 results using the 6-311++G(3df,3pd) basis set. A correlation between the calculated DFT potentials and the exchange and correlation enhancement factors at the low-density region has been elucidated. The asymptotic behaviors of the DFT potentials are also analyzed.  相似文献   

19.
Theoretical calculations have been performed on three model reactions representing the reduction of hydrogen peroxide by ebselen, ebselen selenol, and ebselen diselenide. The reaction surfaces have been investigated at the B3PW91/6-311G(2df,p) level, and single-point energies were calculated using the 6-311++G(3df,3pd) basis set. Solvent effects were included implicitly with the conductor-like polarizable continuum model and in one case with explicit inclusion of three water molecules. Mechanistic information is gained from investigating the critical points using the quantum theory of atoms in molecules. The barriers for the reduction of hydrogen peroxide with the ebselen, ebselen selenol, and ebselen diselenide models are 56.7, 53.4, and 35.3 kcal/mol, respectively, suggesting that ebselen diselenide may be the most active antioxidant in the ebselen GPx redox pathway. Results are also compared to that of the sulfur analogues of the model compounds.  相似文献   

20.
The reaction mechanism of carbonyl oxide with hydroxyl radical was investigated by using CASSCF, B3LYP, QCISD, CASPT2, and CCSD(T) theoretical approaches with the 6-311+G(d,p), 6-311+G(2df, 2p), and aug-cc-pVTZ basis sets. This reaction involves the formation of H2CO + HO2 radical in a process that is computed to be exothermic by 57 kcal/mol. However, the reaction mechanism is very complex and begins with the formation of a pre-reactive hydrogen-bonded complex and follows by the addition of HO radical to the carbon atom of H2COO, forming the intermediate peroxy-radical H2C(OO)OH before producing formaldehyde and hydroperoxy radical. Our calculations predict that both the pre-reactive hydrogen-bonded complex and the transition state of the addition process lie energetically below the enthalpy of the separate reactants (DeltaH(298K) = -6.1 and -2.5 kcal/mol, respectively) and the formation of the H2C(OO)OH adduct is exothermic by about 74 kcal/mol. Beyond this addition process, further reaction mechanisms have also been investigated, which involve the abstraction of a hydrogen of carbonyl oxide by HO radical, but the computed activation barriers suggest that they will not contribute to the gas-phase reaction of H2COO + HO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号