首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
靳伍银  徐健学  吴莹  洪灵 《中国物理》2004,13(3):335-340
A study of Hodgkin-Huxley (HH) neuron under external sinusoidal excited stimulus is presented in this paper. As is well known, the stimulus frequency is to be considered as a bifurcate parameter, and numerous phenomena, such as synchronization, period, and chaos appear alternatively with the changing of the stimulus frequency. For the stimulus frequency less than 2fB (fB being the base frequency in this paper), the simulation results demonstrate that the single HH neuron could completely convey the sinusoidal signal in anti-phase into interspike interval (ISI) sequences. We also report, perhaps for the first time, another kind of phenomenon, the beat phenomenon, which exists in the phase dynamics of the ISI sequences of the HH neuron stimulated by a sinusoidal current. It is shown furthermore that intermittent transition results in the general route to chaos.  相似文献   

2.
Previous studies have observed that electromagnetic induction can seriously affect the electrophysiological activity of the nervous system. Considering the role of astrocytes in regulating neural firing, we studied a simple neuron–astrocyte coupled system under electromagnetic induction in response to different types of external stimulation. Both the duration and intensity of the external stimulus can induce different modes of electrical activity in this system, and thus the neuronal firing patterns can be subtly controlled. When the external stimulation ceases, the neuron will continue to fire for a long time and then reset to its resting state. In this study, "delay" is defined as the delayed time from the firing state to the resting state, and it is highly sensitive to changes in the duration or intensity of the external stimulus. Meanwhile, the self-similarity embodied in the aforementioned sensitivity can be quantified by fractal dimension. Moreover, a hysteresis loop of calcium activity in the astrocyte is observed in the specific interval of the external stimulus when the stimulus duration is extended to infinity, since astrocytic calcium or neuron electrical activity in the resting state or during periodic oscillation depends on the initial state. Finally, the regulating effect of electromagnetic induction in this system is considered. It is clarified that the occurrence of "delay" depends purely on the existence of electromagnetic induction. This model can reveal the dynamic characteristics of the neuron–astrocyte coupling system with magnetic induction under external stimulation. These results can provide some insights into the effects of electromagnetic induction and stimulation on neuronal activity.  相似文献   

3.
We study dynamics of spiral waves under a uniform periodic temporal forcing in an excitable medium. With a specific combination of frequency and amplitude of the external periodic forcing, a resonance drift of a spiral wave occurs along a straight line, and it is accompanied by a complicated ‘flower-like' motion on each side of this bifurcate boundary line. It is confirmed that the straight-line drift frequency of spiral waves is not locked to the nature rotation frequency as the forcing amplitude expends are further verified numerically for a simplified kinematical the range of the spiral wave frequency. These results model.  相似文献   

4.
刘超飞  胡柯  胡涛  唐翌 《中国物理 B》2011,20(1):10309-010309
The perturbation of a confining trap leads to the collective oscillation of a Bose--Einstein condensate, thereby the propagation of a dark soliton in the condensate is affected. In this study, periodic perturbation is employed to match the soliton oscillation. We find that the soliton dynamics depends sensitively on the coupling between the moving direction of the trap and that of the soliton. The soliton energy/depth evolves periodically, and a relevant shift in the soliton trajectory occurs as compared with the unperturbed case. Overall, the soliton oscillation frequency changes little even if the perturbation amplitude and frequency vary.  相似文献   

5.
<正>Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force,we derive the analytic expression of the first moment of output response,and study the stochastic resonance phenomenon in a system.The results show that the output response of this system behaves as a simple harmonic vibration,of which the frequency is the same as the external driving frequency,and the variations of amplitude with the driving frequency and the inherent frequency present a bona fide stochastic resonance.  相似文献   

6.
The Gaussian spin model with periodic interactions on the diamond-type hierarchical lattices is constructed by generalizing that with uniform interactions on translationally invariant lattices according to a class of substitution sequences.The Gaussian distribution constants and imposed external magnetic fields are also periodic depending on the periodic characteristic of the interaction onds.The critical behaviors of this generalized Gaussian model in external magnetic fields are studied by the exact renormalization-group approach and spin rescaling method.The critical points and all the critical exponents are obtained.The critical behaviors are found to be determined by the Gaussian distribution constants and the fractal dimensions of the lattices.When all the Gaussian distribution constants are the same,the dependence of the critical exponents on the dimensions of the lattices is the same as that of the Gaussian model with uniform interactions on translationally invariant lattices.  相似文献   

7.
石霞  陆启韶 《中国物理》2005,14(6):1088-1094
Noise effects on coherence resonance and synchronization of Hindmarsh-Rose (HR) neuron model are studied. The coherence resonance of a single HR neuron with Gaussian white noise added to the membrane potential is investigated in situations before, near and after the Hopf bifurcation, separately, with the external direct current as a bifurcation parameter. It is shown that even though there is no coupling between neurons, uncoupled identical HR neurons driven by a common noise can achieve complete synchronization when the noise intensity is higher than a critical value. Furthermore, noise also enhances complete synchronization of weakly coupled neurons. It is concluded that synchronization in bursting neurons is easier to be induced than in spiking ones, and coupling enhances the sensitivity of synchronization of neurons to noise stimulus.  相似文献   

8.
Quantitative analyses on phonotactic behavior of the bushcricket havedemonstrated that the bushcricket possesses good capability to determine directionof sound source.The morphological structure,laterality and directional sensitivityof the auditory ascending neuron in the prothoracic ganglion of the bushcrickethave been studied.At its best frequency of 15 kHz,the laterality threshold differ-ence of the neuron is great up to about 16 dB.Its directional sensitivity dependsclosely on stimulus frequency.The higher the stimulus frequency,the greater thedirectional threshold differences.Spike count and latency shift of the ascendingneuron in response to each stimulus depend on the angle of incidence of sound.Therefore,the two parameters can be used as directional cues of sound source bythe ascending neuron.  相似文献   

9.
The strength always exists before the material melts. In this paper, the viscoelastic-plastic model is applied to improve the finite difference method, and the numerical solutions for the disturbance amplitude damping behavior of the sinusoidal shock front in a flyer-impact experiment are obtained. When the aluminum is shocked to 101 GPa, the effect of elastoplasticity on the zero-amplitude point of the oscillatory damping curve is the same as that of viscosity when η = 700 Pa·s,and the real shear viscosity coefficient of the shocked aluminum is determined to be about 2800±100 Pa·s. Comparing the experiment data with the numerical results of the viscoelastic-plastic model, we find that the aluminum is close to melting at 101 GPa.  相似文献   

10.
李月  杨宝俊  邓小英  金雷  杜立志 《中国物理》2004,13(9):1386-1390
In the zero-order approximation, we use the perturbation method of parameter with small magnitude to prove that the harmonic frequency in the solution of the equation is close to that of the driving force when the chaotic system from Duffing-Holmes equation stays in the stable periodic state, which is the physical mechanism of the detection of the unknown frequency of weak harmonic signal using the chaotic theory. The result of the simulation experiment shows that the method proposed in this paper, by which one can determine the frequency of the stable system from the number of circulation change of the phase state directionally across a fixed phase state point (x,\dot{x}) in fixed simulation time period, is successful. Analyzing the effects of the damping ratio on the chaotic detection result, one can see that for different frequency ranges it is necessary to carefully choose corresponding damping ratio α.  相似文献   

11.
Recently, the phenomena of stochastic resonance (SR) have attracted much attention in the studies of the excitable systems under inherent noise, in particular, nervous systems. We study SR in a stochastic Hodgkin-Huxley neuron under Ornstein-Uhlenbeck noise and periodic stimulus, focusing on the dependence of properties of SR on stimulus parameters. We find that the dependence of the critical forcing amplitude on the frequency of the periodic stimulus shows a bell-shaped structure with a minimum at the stimulus frequency, which is quite different from the monotonous dependence observed in the bistable system at a small frequency range. The frequency dependence of the critical forcing amplitude is explained in connection with the firing onset bifurcation curve of the Hodgkin-Huxley neuron in the deterministic situation. The optimal noise intensity for maximal amplification is also found to show a similar structure.  相似文献   

12.
《Physics letters. A》2006,360(1):135-140
We first investigate the amplitude effect of the subthreshold periodic forcing on the regularity of the spiking events by using the coefficient of variation of interspike intervals. We show that the resonance effect in the coefficient of variation, which is dependent on the driving frequency for larger membrane patch sizes, disappears when the amplitude of the subthreshold forcing is decreased. Then, we demonstrate that the timings of the spiking events of a noisy and periodically driven neuron concentrate on a specific phase of the stimulus. We also show that increasing the intensity of the noise causes the phase probability density of the spiking events to get smaller values, and eliminates differences in the phase locking behavior of the neuron for different patch sizes.  相似文献   

13.
谢勇  程建慧 《物理学报》2017,66(9):90501-090501
通过相位响应曲线可对具有极限环周期运动的动力系统的性质有更为深入的理解.神经元是一个典型的动力系统,因此相位响应曲线提供了一种研究神经元重复周期放电行为的新思路.本文提出一种求解相位响应曲线的方法,即方波扰动的直接算法,通过Hodgkin-Huxley,Fitz Hugh-Nagumo,Morris-Lecar和Hindmarsh-Rose神经元模型验证该算法可计算周期峰放电、周期簇放电的相位响应曲线.该算法克服了其他算法在运用过程中的局限性.利用该算法计算结果表明:周期峰放电的相位响应曲线类型是由其分岔类型所决定;在Morris-Lecar模型中发现一种开始于Hopf分岔终止于鞍点同宿轨道分岔的阈上周期振荡,其相位响应曲线属于第二类型.通过大量的相位响应曲线的计算发现相位响应的相对大小及正负性仅取决于扰动所施加的时间,而且周期簇放电的相位响应曲线比周期峰放电的相位响应曲线更为复杂.  相似文献   

14.
Leaky integrate-and-fire neuron models display stochastic resonance-like behavior when stimulated by subthreshold periodic signal and noise. Previous works have shown that matching between the time scales of the noise induced discharges and the modulation period can account for this phenomenon at low modulation amplitudes, but not large subthreshold modulation amplitude. In order to examine the discharge patterns of the model in this regime, we introduce a method for the computation of the power spectral density of the discharge train. Using this method, we clarify the role of the distribution of the input phase at discharge times. Finally, we argue that for large subthreshold inputs, mean discharge frequency locking accounts for the enhanced response.  相似文献   

15.
突触输入刺激神经元产生的电活动,在神经编码中发挥着重要作用.通常认为,兴奋性输入增强电活动,抑制性输入压制电活动.本文选取可调节电流衰减速度的突触模型,研究了兴奋性自突触在亚临界Hopf分岔附近压制神经元电活动的反常作用,与抑制性自突触的压制作用进行了比较,并采用相位响应曲线和相平面分析解释了压制作用的机制.对于单稳的峰放电,快速和中速衰减的兴奋性自突触分别可以诱发频率降低的峰放电和混合振荡(峰放电与阈下振荡的交替),而中速和慢速衰减的抑制性自突触也可以分别诱发频率降低的峰放电和混合振荡.对于与静息共存的峰放电,除上述两种行为外,中速衰减的兴奋性和慢速衰减的抑制性自突触还可以诱发静息.兴奋性和抑制性自突触电流在不同的衰减速度下,分别作用在峰放电的不同相位,才能诱发同类压制行为.结果丰富了兴奋性突触压制电活动反常作用的实例,获得了兴奋性和抑制性自突触压制作用机制的不同,给出了调控神经放电的新手段.  相似文献   

16.
局部有源忆阻器(locally-active memristor,LAM)凭借其高集成度、低功耗和局部有源特性等优点,在神经形态计算领域显示出巨大的潜力.本文提出了一种简单的N型LAM数学模型,通过揭示其非线性动力特性,设计了N型LAM神经元电路.采用Hopf分岔、数值分析等方法定量研究了该电路的动力学行为,成功模拟了多种神经形态行为,包括全或无行为、尖峰、簇发、周期振荡等.并利用该神经元电路结构模拟了生物触觉神经元的频率特性.仿真结果表明:当输入信号幅值低于阈值时,神经元电路输出信号的振荡频率与输入信号强度呈正相关(即兴奋状态),并在阈值处达到最大值.随后,继续增大激励强度,振荡频率则逐渐降低(即保护性抑制状态).最后,设计了N型LAM硬件仿真器,并完成了人工神经元电路的硬件实现,实验结果与仿真结果、理论分析相一致,验证了该N型LAM具备的神经形态行为.  相似文献   

17.
局部有源忆阻器(locally-active memristor,LAM)凭借其高集成度、低功耗和局部有源特性等优点,在神经形态计算领域显示出巨大的潜力.本文提出了一种简单的N型LAM数学模型,通过揭示其非线性动力特性,设计了N型LAM神经元电路.采用Hopf分岔、数值分析等方法定量研究了该电路的动力学行为,成功模拟了多种神经形态行为,包括全或无行为、尖峰、簇发、周期振荡等.并利用该神经元电路结构模拟了生物触觉神经元的频率特性.仿真结果表明:当输入信号幅值低于阈值时,神经元电路输出信号的振荡频率与输入信号强度呈正相关(即兴奋状态),并在阈值处达到最大值.随后,继续增大激励强度,振荡频率则逐渐降低(即保护性抑制状态).最后,设计了N型LAM硬件仿真器,并完成了人工神经元电路的硬件实现,实验结果与仿真结果、理论分析相一致,验证了该N型LAM具备的神经形态行为.  相似文献   

18.
We model the dynamics of the leaky integrate-and-fire neuron under periodic stimulation as a Markov process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each spike made in earlier papers and thus solves the long-standing reset problem. The neuron exhibits stochastic resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized to other periodically driven stochastic processes containing a reset mechanism.  相似文献   

19.
Fengpan Zhang  Jinrui Lu  Aimin Chen 《Physica A》2010,389(6):1286-1295
Cooperative stability of protein is here defined as the tendency for the oligomers to be more stable than their monomeric components and to perform their physiological functions. In this paper, we incorporate nonlinear degradation of protein induced by cooperative stability into a simple model which has been previously presented in the biological literature. Linear analysis gives a critical time delay beyond which a periodic solution is born in a Hopf bifurcation. Lindstedt’s method is applied to the nonlinear system, resulting in closed form approximate expressions for the amplitude and frequency of oscillation. Our findings indicate that cooperative stability can cause periodic dynamics through reducing the critical time delay. In addition, we show that cooperative stability may increase the amplitude of oscillation. Our study contributes to the theoretical demonstration of the effect of cooperative stability in the simple gene regulatory network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号