首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH(4)NO(3)) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm(-1) and the amine band at 1591 cm(-1) to 1650 and 1557 cm(-1) respectively and the shift of the hydroxyl band from 3377 to 3354 cm(-1). The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm(-1) and is observed at 3343 cm(-1) in the spectrum of the PVA film. On addition of NH(4)NO(3) up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm(-1) to 1642, 1541 and 3348 cm(-1) indicating that the chitosan has complexed with the salt. In the PVA-NH(4)NO(3) spectrum, the hydroxyl band has shifted from 3343 to 3272 cm(-1) on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH(4)NO(3) systems. In the spectrum of PVA-chitosan-NH(4)NO(3)-EC complex, the doublet CO stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.  相似文献   

2.
NIR spectroscopy has been used to measure the adsorption of p-nitrophenol on untreated montmorillonite and surfactant exchanged montmorillonite. p-Nitrophenol is characterised by an intense NIR band at 8890 cm(-1) which shifts to 8840 cm(-1) upon adsorption on organoclay. The band was not observed for p-nitrophenol adsorbed on untreated montmorillonite. Both the montmorillonite and the surfactant modified montmorillonite are characterised by NIR bands at 7061 and 6791 cm(-1). The organoclay is characterised by two prominent bands at 5871 and 5667 cm(-1) assigned to the fundamental overtones of the mid-IR bands at 2916 and 2850 cm(-1). A band at 6017 cm(-1) is attributed to the p-nitrophenol adsorbed on the organoclay. The band is not observed for the montmorillonite with adsorbed p-nitrophenol. It is concluded that p-nitrophenol is adsorbed to significantly greater amounts on the organoclay compared with the untreated montmorillonite. The implication is that organoclays are most useful for removing organic molecules from water through adsorption.  相似文献   

3.
The interaction between bacterial cells of Pseudomonas fluorescens (ATCC 17552) and gold electrodes was analyzed by cyclic voltammetry (CV) and attenuated total reflection-surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The voltammetric evaluation of cell adsorption showed a decrease in the double-layer capacitance of polyoriented single-crystal gold electrodes with cell adhesion. As followed by IR spectroscopy in the ATR configuration, the adsorption of bacterial cells onto thin-film gold electrodes was mainly indicated by the increase in intensity with time of amide I and amide II protein-related bands at 1664 and 1549 cm(-1), respectively. Bands at 1448 and 2900 cm(-1) corresponding to the scissoring and the stretching bands of CH2 were also detected, together with a minor peak at 1407 cm(-1) due to the vs COO- stretching. Weak signals at 1237 cm(-1) were due to amide III, and a broad band between 1100 and 1200 cm(-1) indicated the presence of alcohol groups. Bacteria were found to displace water molecules and anions coadsorbed on the surface in order to interact with the electrode intimately. This fact was evidenced in the SEIRAS spectra by the negative features appearing at 3450 and 3575 cm-1, corresponding to interfacial water directly interacting with the electrode and water associated with chloride ions adsorbed on the electrode, respectively. Experiments in deuterated water confirmed these assignments and allowed a better estimation of amide absorption bands. In CV experiments, an oxidation process was observed at potentials higher than 0.4 V that was dependent on the exposure time of electrodes in concentrated bacterial suspensions. Adsorbed bacterial cells were found to get closer to the gold surface during oxidation, as indicated by the concomitant increment in the main IR bacterial signals including amide I, a sharp band at 1240 cm(-1), and a broad one at 1120 cm(-1) related to phosphate groups in the bacterial membranes. It is proposed to be due to the oxidation of lipopolysaccharides on the outermost bacterial surface.  相似文献   

4.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

5.
The splitting of v1 (794 cm(-1)) and v3 (805 cm(-1)) modes in the stretching region of the bromate (C3v) was observed for the first time in dimethyl sulfoxide (DMSO) using vibrational spectroscopy. Depolarization measurements allowed to assign the asymmetric and symmetric modes in solution. The band at 805 cm(-1) that has been attributed to the symmetric stretching mode (A1) corresponds in fact to the asymmetric stretching mode (E) and the band at 794 cm(-1) corresponds to the symmetric stretching mode (A1).  相似文献   

6.
New bio-inspired polymer composites of alginic acid and benzimidazole were created and characterized by FT NIR Raman spectroscopy. The obtained films with 1:0.5, 1:1 and 1:1.5 molar ratio are homogeneous, with good mechanical properties. Raman spectra recorded at room temperature revealed that the obtained films are a new compound with a different molecular structure and physical properties compared with pure substrates: alginic acid and benzimidazole. Raman band related to vibration of COOH entity at 1740 cm(-1) of alginic acid disappears in the alginic acid:benzimidazole composites, in which new Raman band related to COO(-) was found. Additionally, characteristic lines observed in polymer composites which may be associated with vibrations of NH groups, can be attributed to the linking of proton to deprotonated N atom in benzimidazole group. Possibility of such proton exchange is a promising property which might facilitate the application of obtained composites to anhydrous proton conducting electrolytes in fuel cells.  相似文献   

7.
A series of tungstate bearing minerals including scheelite, stolzite, ferberite, hübnerite, wolframite, russellite, tungstenian wulfenite and cuprotungstite have been analyzed by Raman microscopy. The results of the Raman spectroscopic analysis are compared with published data. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the pargenetic relationships between the minerals. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals. These minerals have characteristically different Raman spectra. The nu1(Ag) band is observed at 909 cm(-1) and although the corresponding nu1(Bu) vibration should be inactive a minor band is observed around 894 cm(-1). The bands at 790 and 881 cm(-1) are associated with the antisymmetric and symmetric Ag modes of terminal WO2. The band at 695 cm(-1) is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The nu4(Eg) band was absent for scheelite. The bands at 353 and 401 cm(-1) are assigned as either deformation modes or as r(Bg) and delta(Ag) modes of terminal WO2. The band at 462 cm(-1) has an equivalent band in the infrared at 455 cm(-1) assigned as delta(as)(Au) of the (W2O4)n chain. The band at 508 cm(-1) is assigned as nu(sym)(Bg) of the (W2O4)n chain.  相似文献   

8.
Adsorption of the sulfuric acid anion (HSO4- or SO42-) has been studied on Pd(S)-[n(111) x (111)] electrodes (n = 2, 3, 5, 9, 20, infinity) using in situ infrared reflection absorption spectroscopy (IRAS). A single band is observed around 1200 cm(-1) on all the electrodes. The band is assigned to the SO stretching vibration of the sulfuric acid anion adsorbed with three- or onefold geometry. This result differs from the case of Pt-stepped surfaces on which two IRAS bands are observed around 1200 and 1100 cm(-1). The maximum coverage of the sulfuric acid anion is enhanced with the increase of the terrace width. The surfaces with n more than 3 have similar IRAS band shifts (dv/dE). Pd-stepped surfaces, for which the terrace is wide enough for the anion adsorption, adsorb the anion on the terrace rather than the step.  相似文献   

9.
Fourier transform infrared spectroscopic (FTIR) interrogation of biological tissues in real time has largely been a challenging proposition because of the strong absorption of mid-infrared light in water filled tissues. To enable sampling of tissues they must be sectioned and dried, which has time and resource implications. FTIR of touch imprint cytology (TIC) has been proposed to circumvent this problem. TIC is a well known histopathological method of rapidly analysing biological tissues. In this article we demonstrate the ability of FTIR of TIC to provide detailed spectra which can be used to differentiate various tissue pathologies. FTIR spectral profiles of TIC of lymph node and thyroid tissues differ visually when compared with TIC spectra of parathyroid tissue. The lymph node showed strong lipid spectral peaks at 1166cm(-1) and 1380cm(-1) including a very strong carbonyl-ester band at 1748cm(-1), and a strong methylene bending band (scissoring, at 1464cm(-1)). Smaller intensity protein peaks at 1547cm(-1) and 1659cm(-1) were also seen. The thyroid spectra, in addition to evident strong protein peaks at 1547cm(-1) and 1659cm(-1), also demonstrated possible nucleic acid signals at 1079cm(-1) and 1244cm(-1). The C-OH peak at 1037cm(-1) was attributed to carbohydrate signals. Parathyroid adenoma showed a marginal shift to lower wavenumbers with decreased amide I and II peak intensities when compared to hyperplasia. Nucleic acid peak positions at 1079cm(-1) and 1244cm(-1) were of higher intensity in adenomas compared to hyperplastic glands possibly demonstrating an increase in cell proliferation and growth. This study demonstrates the feasibility of cytoimprint FTIR for the intraoperative diagnosis of tissue during surgical neck exploration for the management of hyperparathyroidism. There is potential for the application of the technique in sentinel lymph node biopsy diagnosis and tumour margin evaluation.  相似文献   

10.
CO加氢反应机理是许多研究者感兴趣的课题.负载的Rh是CO加氢反应的优良催化剂.CO在Rh上吸附态的研究已有许多报道[1~7],而对H2有关的吸附态的研究却少见报道.Worley等[8]利用高压超纯H2在2.2%Rh/Al2O3膜上首次观测到Rh—H...  相似文献   

11.
To demonstrate photodynamic antimicrobial chemotherapy (PACT) against planktonic and biofilm cultures of Pseudomonas aeruginosa, using photoporphyrin IX which could be endogenously synthesized by administrating delta-aminolaevulinic acid (delta-ALA), and a light emitted diode (LED) array to photoactivate the photosensitizer. P. aeruginosa suspended cells or biofilms, grown on a rotating disk reactor, were treated by different concentrations of delta-ALA in the dark for 1 h, followed by LED irradiation for various time. Regrowth experiments were conducted by placed PACT-treated disks back to a sterile reactor. Viable cells were determined by serial dilution and plate counts. Both P. aeruginosa planktonic and biofilm cells were inhibited by PACT with light doses or photosensitizer concentrations increasing. Treatments of planktonic cells with 10 mM delta-ALA and incident dose 240 J cm(-2) or 7.5 mM ALA and incident dose 360 J cm(-2) led to completely photoinactivation. No viable biofilm cells were found after treatment of 20 mM delta-ALA and incident dose 240 J cm(-2). However, regrowth was observed once PACT-treated biofilms were put back to a sterile reactor. Regrowth could be prevented only if biofilm samples were treated PACT twice. delta-ALA-mediated PACT on P. aeruginosa planktonic and biofilm cells was effective, though the detailed mechanism still required further investigation.  相似文献   

12.
The ultraviolet absorption spectrum in the range 340-185 nm in the vapour and solution phase has been measured for 2-fluoro-5-bromopyridine. Three fairly intense band systems identified as the pi* <-- pi transitions II, III and IV have been observed. A detailed vibronic analysis of the vapor and solution spectra is presented. The first system of bands is resolved into about sixty-two distinct vibronic bands in the vapour-phase spectrum. The 0,0 band is located at 35944 cm(-1). Two well-developed progressions, in which the excited state frequencies nu'25 (283 cm(-1)) and nu'19 (550 cm(-1)) are excited by several quanta, have been observed. The corresponding excited state vibrational and anharmonicity constants are found to be omega'i = 292 cm(-1), x'ii = 4.5 cm(-1) (i = 25) and omega'i = 563.8 cm(-1), x'ii = 6.9 cm(-1) (i = 19). The other two band systems show no vibronic structure, the band maxima being located at 48346 and 52701 cm(-1), respectively. The oscillator strength of the band systems in different solutions and the excited state dipole moments associated with the first two transitions have been determined by the solvent-shift method. The infrared spectrum in the region 4000-130 cm(-1) and the laser Raman spectrum of the molecule in the liquid state have been measured and a complete vibrational assignment of the observed frequencies is given. A correlation of the ground and excited state fundamental frequencies observed in the UV absorption spectrum with the Raman or infrared frequencies is presented.  相似文献   

13.
Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the nu1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm(-1) with a resolution of 0.004 cm(-1). A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736 +/- 0.0004 cm(-1). The assigned transitions have been fitted to give a set of eight rovibrational constants for the nu1 = 1 state with a standard deviation of 0.00078 cm(-1).  相似文献   

14.
CO adsorption at 1 MPa on Cu-Zn stearate colloids and supported Cu catalysts was studied in situ by attenuated total reflection infrared (ATR-IR) spectroscopy. Subsequent to thorough reduction by H(2), the IR band at 2110-2070 cm(-1) due to linearly adsorbed CO on clean metallic Cu was always observed initially on all Cu catalysts. During the exposure of Zn-containing samples to CO at high pressure, a new IR band at ca. 1975 cm(-1) appeared in addition and increased in intensity even at room temperature. The detailed analysis of the IR spectra showed that the new IR band at ca. 1975 cm(-1) was not related to coadsorbed carbonate/formate-like species, but to the content of Zn in the samples. This IR band was found to be more stable than that at 2110-2070 cm(-1) during purging with inert gas. It disappeared quickly in synthetic air, pointing to a strongly reduced state of the Zn-containing Cu catalysts achieved during high-pressure CO exposure. It is suggested that CO can reduce ZnO to Zn in the presence of Cu, resulting in the formation of a CuZn(x) surface alloy. As the CO species with the characteristic IR band at ca. 1975 cm(-1) binds more strongly to this CuZn(x) alloy than the linearly adsorbed CO to pure Cu, it is suggested to be adsorbed on a bridge site.  相似文献   

15.
The electrooxidation of CO has been studied on reconstructed gold single-crystal surfaces by a combination of electrochemical (EC) and infrared reflection absorption spectroscopy (IRAS) measurements. Emphasis is placed on relating the vibrational properties of the CO adlayer to the voltammetric and other macroscopic electrochemical responses, including rotating disk electrode measurements of the catalytic activity. The IRAS data show that the C-O stretching frequencies are strongly dependent on the surface orientation and can be observed in the range 1940-1990 cm(-1) for the 3-fold bridging, 2005-2070 cm(-1) for the 2-fold bridging, and 2115-2140 for the terminal position. The most complex CO spectra are found for the Au(110)-(1 x 2) surface, i.e., a band near 1965 cm(-1), with the second, weaker band shifted positively by about 45 cm(-1) and, finally, a weak band near 2115 cm(-1). While the C-O stretching frequencies for a CO adlayer adsorbed on Au(111)-(1 x 23) show nu(CO) bands at 2029-2069 cm(-1) and at 1944-1986 cm(-1), on the Au(100)-"hex" surface a single CO band is observed at 2004-2029 cm(-1). In the "argon-purged" solution, the terminal nu(CO) band on Au(110)-(1 x 2) and the 3-fold bridging band on the Au(111)-(1 x 23) disappear entirely. The IRAS/EC data show that the kinetics of CO oxidation are structure sensitive; i.e., the onset of CO oxidation increases in the order Au(110)-(1 x 2) > or = Au(100)-"hex" > Au(111)-(1 x 23). Possible explanations for the structure sensitivity are discussed.  相似文献   

16.
Absolute line intensities in the nu(6) and nu(8) interacting bands of trans-HCOOH, observed near 1105.4 and 1033.5 cm(-1), respectively, and the dissociation constant of the formic acid dimer (HCOOH)(2) have been measured using Fourier transform spectroscopy at a resolution of 0.002 cm(-1). Eleven spectra of formic acid, at 296.0(5) K and pressures ranging from 14.28(25) to 314.0(24) Pa, have been recorded between 600 and 1900 cm(-1) with an absorption path length of 19.7(2) cm. 437 integrated absorption coefficients have been measured for 72 lines in the nu(6) band. Analysis of the pressure dependence yielded the dissociation constant of the formic acid dimer, K(p)=361(45) Pa, and the absolute intensity of the 72 lines of HCOOH. The accuracy of these results was carefully estimated. The absolute intensities of four lines of the weak nu(8) band were also measured. Using an appropriate theory, the integrated intensity of the nu(6) and nu(8) bands was determined to be 3.47 x 10(-17) and 4.68 x 10(-19) cm(-1)(molecule cm(-2)) respectively, at 296 K. Both the dissociation constant and integrated intensities were compared to earlier measurements.  相似文献   

17.
CO adsorption on Ru-Sn/SiO(2) catalysts of various Sn/(Ru+Sn) ratios was examined by Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS). The catalysts were prepared by the incipient wetness impregnation method. Catalysts were activated by H(2) reduction at 773 K. CO adsorbed on the catalysts shows spectra whose band frequencies are divided into three groups: (i) High Frequency Region (HFR), containing a band at 2065 cm(-1), (ii) Low Frequency Region 1 (LFR(1)), containing bands at 2040-2015 cm(-1), (iii) Low Frequency Region 2 (LFR(2)), containing bands at 1990 and 1945 cm(-1). The types of adsorbed CO species formed strongly depend on the ratio Sn/(Ru+Sn) in the catalyst, CO pressure and temperature of adsorption. Adsorption of CO on Ru sites in the Ru/SiO(2) catalyst results in LFR(1) bands at 2040-2015 cm(-1), which are independent of the CO pressure but the adsorption complexes are easily destroyed by raising the temperature. The addition of Sn to the catalyst creates new sites for CO adsorption. After adsorption at 298 K, the HFR band at 2065 cm(-1) and LFR(2) bands at 1990-1950 cm(-1) are observed. The relative intensities of these bands increase with increasing Sn-content in the samples. The LFR bands are thermally stable while the HFR band is not. The formation of the corresponding species is favored by increasing the CO pressure. Adsorbed CO species giving LFR(1) bands are assigned to linearly-adsorbed CO on the Ru(0) and/or on the Ru-Sn alloy sites. Adsorbed CO species giving HFR bands are assigned to CO adsorption on Ru(delta+)-O-Sn sites. After low temperature CO adsorption on samples with high Sn-content, only species that show bands at 1990 and 1945 cm(-1) in LFR(2) are observed.  相似文献   

18.
Solutions of benzenesulfonic acid (BSA) and 4-toluenesulfonic acid monohydrate (PTSA) in dimethylsulfoxide (DMSO) were studied by FT-Raman spectroscopy in the concentration range 1.0-3.5 mol dm(-3) (BSA) and 1.0-4.8 mol dm(-3) (PTSA). Spectra in the region of the Raman acid complex band (C-S + C-C + SO3) stretches, at 1124 cm(-1) were analysed by band-fitting procedures in order to ascertain the degree of acid dissociation. In BSA solutions, this parameter changes from 0.78 at 1.02 M to 0.47 at 3.5M, despite the strong character of the acid. Interaction of DMSO with undissociated BSA produces a new band in the solvent nu(C-S) Raman spectral region near 671 cm(-1), displaced >15.0 cm(-1), and assigned to DMSO molecules H-bonded to BSA. In PTSA solutions, hydrogen bonds are formed with the oxonium ion (H3O+) dissociated from the acid. In this case, the displacement observed is only >10.0 cm(-1), indicating a weaker interaction. From the concentration of H-bonded DMSO, the solute/solvent coordination number and its inverse, the mean number of H-bonds participating in bonding with each solvent molecule can be calculated. This coordination number changes in BSA solutions in bimodal way, passing through a maximum and reaching a limit of 2 in the most concentrated solution. This number agrees with that found in the solid solvate BSA.2DMSO. In PTSA solutions, the general trend is similar, but low coordination numbers are obtained, in agreement with the low acidity of the oxonium ion. The bimodal behaviour observed in both acids is explained by the self-associated structure of the solvent.  相似文献   

19.
The low-frequency modes of the benzoic acid (BA) dimer and its analogues in carbon tetrachloride (CCl(4)) have been investigated by terahertz time-domain spectroscopy. The solute spectrum is obtained by subtracting the solvent contribution from that of the solution. The difference spectrum of BA in CCl(4) has a broad band with a peak at 68 cm(-1). To assign the observed band, the spectrum is compared with spectra of other aromatic molecules, such as benzene and phenol in addition to p-methyl BA and deuterated BA species (BA-d(OH) and BA-d(5)) in CCl(4). The band at 68 cm(-1) is assigned to the cogwheel mode of the BA dimer. Density functional theory calculations also support this assignment. Finally, spectral lineshape analysis based on the multimode Brownian oscillator model is applied to the THz spectra for all the samples.  相似文献   

20.
The infrared (IR) spectra of CO adsorbed on 10, 20, and 30 wt % nickel phosphide-containing reduced SBA-15 and KIT-6 mesoporous silica-supported catalysts have been studied at 300-473 K. On the catalysts containing a stoichiometric amount of phosphorus with 20 wt % loading, the most intense IR absorption band was observed at 2097-2099 cm(-1), which was assigned to CO terminally bonded to coordinatively unsaturated Ni(delta+) (0 < delta < 1) sites. The frequency of this band was 15 cm(-1), higher than that in the spectrum of a reduced Ni2P/SiO2 catalyst, indicating a modified Ni-P charge distribution. This band shifted to lower wavenumbers, and its intensity decreased, while the relative intensity of another band at 2191-2194 cm(-1) assigned to CO terminally bonded to P increased going to catalytically less active, excess-P-containing SBA-15-supported catalysts. CO also adsorbed as a bridged carbonyl (1910 cm(-1)) and as Ni(CO)4 (2050 cm(-1)) species, and the formation of surface carbonates was also identified. The nature of the surface acidity was studied by temperature-programmed desorption of ammonia (NH3-TPD). Weak and strong acid sites were revealed, and the high excess-P-containing catalyst released the highest amount of ammonia, indicating that a high concentration of strong acidity can be disadvantageous for reaching high hydrotreating catalytic activity. The modified Ni-P charge distribution, the mode of CO adsorption on surface nickel phosphide sites, as well as the acidity can be directly connected to the catalytic activity of these mesoporous silica-supported catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号