首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct UV irradiation of the 1-arylethyl phosphites 7, 8, and 9 was carried out in acetonitrile, benzene, and cyclohexane, as was the triphenylene-sensitized reaction of 9. Dimethyl 1-phenylethyl phosphite, 7, gives the photo-Arbuzov rearrangement product, dimethyl 1-phenylethylphosphonate (10), in 67% average yield and minor amounts (2%) of 2,3-diphenylbutane (11a) in quantum yields of 0.32 and 0.02, respectively. The photorearrangement of optically active, predominantly (R)-1-phenylethyl phosphite 7 (R/S = 97/3; 94% ee), at 35-40 degrees C proceeds with a high degree of stereospecificity at the stereogenic migratory carbon to give predominantly (R)-10 (R/S = 86/14, 72 +/- 2% ee). Use of the nitroxide radical trap TEMPO affords phosphonate 10, presumably all cage product, from predominantly (R)-7 (R/S = 97/3; 94% ee) in 64% yield (80% ee, R/S = 90/10). By contrast, the 1-(4-acetylphenyl)-ethyl phosphite, predominantly (S)-8 (S/R = 98/2, 96% ee), on direct irradiation gives the corresponding phosphonate (12) in only 20% yield along with dimer 11b in 40% accountability yield. Phosphonate 12 is nearly racemic (R/S = 52/48). Direct irradiation of predominantly (R)-9 (R/S = 98/2, 96% ee), a 1-(1-naphthyl)ethyl phosphite, results in a product distribution similar to that from predominantly (R)-7, but with a somewhat higher degree of retention of configuration in the product phosphonate 13 (R/S = 93/7, 86 +/- 3 ee). By contrast, the triplet triphenylene-sensitized photorearrangement of largely (R)-9 (R/S = 98/2, 96% ee) leads to product distributions similar to those from direct irradiation of predominantly (S)-8 and is accompanied by almost total loss of stereochemistry in its product phosphonate, 13 (R/S = 51/49). The partial loss of stereochemistry on direct irradiation of 7 and 9 provides evidence for radical pair formation. Furthermore, these stereochemical results are diagnostic of the multiplicity of the initial radical pair formed. Values for kcomb/krot for the proximate free radical pairs from 7 and 9, derived experimentally, are severalfold larger than those for the proximate singlet pair from Ph2C=C=N-CHPhMe, corrected to 35 degrees C. The possibility that kcomb is increased for the pairs from 7 and 9 is proposed.  相似文献   

2.
The irradiation of the 3-phenyl-2H-azirines 1a–c in the presence of diethyl benzoylphosphonate ( 8 ) in cyclonexane solution, using a mercury high pressure lamp (pyrex filter), yields the diethyl (4, 5-diphenyl-3-oxazolin-5-yl)-phosphonates 9a–c (Scheme 3). In the case of 1b a mixture of two diastereomeric 3-oxazolines, resulting from a regiospecific but non-stereospecific cycloaddition of the benzonitrile-benzylide dipole 2b to the carbonyl group of the phosphonate 8 , was isolated. Benzonitrile-isopropylide ( 2a ), generated from 2,2-dimethyl-3-phenyl-2H-azirine ( 1a ), undergoes a cycloaddition reaction to the ester-carbonyl group of diethyl ethoxycarbonylphosphonate ( 15 ) with the same regiospecificity to give the 3-oxazoline derivative 16 (Scheme 5). The azirines 1a–c , on irradiation in benzene in the presence of diethyl vinylphosphonate ( 17 ) give non-regiospecifically the Δ1-pyrrolines 13a–c and 14a–c (Scheme 6).  相似文献   

3.
A novel solid-phase phosphoramidite-based method has been developed for the synthesis of borane phosphonate DNA. Keys to this new approach are replacement of the common 5'-dimethoxytrityl blocking group with a 5'-silyl ether and the use of new protecting groups on the bases (adenine, N6-dimethoxytrityl; cytosine, N4-trimethoxytrityl; guanine, N2-[9-fluorenylmethoxycarbonyl]; thymine, N3-anisoyl). Because of these developments, it is now possible for the first time to synthesize oligodeoxynucleotides having any combination of the four 2'-deoxynucleosides and both phosphate and borane phosphonate internucleotide linkages (including oligomers having exclusively borane phosphonate linkages).  相似文献   

4.
The SET-induced photorearrangement of dimethyl 2-(4-methoxyphenyl)allyl phosphite, 9 (UV light, uranium glass filter, 9,10-dicyanoanthracene (DCA), biphenyl), gives phosphonate 12 in 83% isolated yield. Laser flash irradiation at 355 nm of oxygen saturated solutions of phosphite 9 containing DCA and biphenyl generates the transient UV spectrum of the biphenyl radical cation that is quenched by electron transfer from phosphite 9 (k(q) = 8.9 x 10(9) M(-1) s(-1) at 20 degrees C) to form the 4-methoxystyryl cation 10. The UV spectrum of 10 decays by a measured first-order rate constant of 8.0 x 10(6) s(-1), presumably to generate the cyclic distonic radical cation 11. Intermediate 10 was further characterized by measurement of the second-order rate constants for its reaction with azide, chloride, and bromide ions and with the neutral nucleophile trimethyl phosphite. This study provides the first spectroscopic evidence regarding the proposed mechanism (Schemes 1 and 2) for the SET-induced photorearrangements of dimethyl 2-arylallyl phosphites to the corresponding 2-arylallylphosphonates. Moreover, absolute rate constants for the intramolecular trapping of alkene radical cations have seldom been measured. The removal of the electron from the styryl moiety of phosphite 9, rather than from phosphorus, and the detectability of 10 arise from the stabilizing effect of the 4-methoxy substituent. These results, however, do not allow conclusions to be made concerning the site of removal of an electron in the SET-induced photorearrangement of dimethyl 2-phenylallyl phosphite 1 to phosphonate 6.  相似文献   

5.
Aldoximes and ketoximes were readily synthesized from aldehydes and hydroxylamine hydrochloride on Al2O3 without solvent under microwave irradiation. At higher irradiation power, aldoximes dehydrated to nitriles and ketoximes rearranged to amides. Aldoximes reacted in a one-pot reaction with N-chlorosuccinimide and alkenes or alkynes over alumina under microwave irradiation to give isoxazolines or isoxazoles. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:351–354, 1998  相似文献   

6.
Summary: Poly(alkylene hydrogen phosphonate)s with a number‐average molecular weight of about 3 000 Da were obtained by a transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol) (PEG 400) under microwave irradiation with a very short reaction time (55 min) relative to that of classical thermal heating (9 h). The structure of the resulting polymer was confirmed by 1H, 31P, and 13C NMR spectroscopy. The molecular weight was determined by 1H, 31P{H} NMR spectroscopy, MALDI‐TOF, and GPC.

The transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol).  相似文献   


7.
Bao SS  Chen GS  Wang Y  Li YZ  Zheng LM  Luo QH 《Inorganic chemistry》2006,45(3):1124-1129
This paper reports the syntheses and crystal structures of a manganese and a uranyl phosphonate based on 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), namely, Mn3{C9N3H18(PO3)3}(H2O)6 x 1.5 H2O (1) and UO2{C9N3H19(PO3H)3} x H2O (2). Compound 1 shows a unique layer structure where the hydrophobic triazacyclononane moieties all reside on one side of the inorganic backbone of the manganese phosphonate layer while the hydrophilic coordinated water molecules reside on the other side. In compound 2, the triazacyclononane moieties are immobilized on the inorganic backbone of the uranyl phosphonate chains. The magnetic properties of compound 1 and the ion exchange properties of compound 2 have been studied.  相似文献   

8.
A synthesis of 1,2-cis-configurated, non-isosteric phosphonate analogues of aldose-1-phosphates is described. Treatment of 1-O-acyl-glycoses 1 , 7 , 13 , and 19 with trialkyl phosphite in the presence of trimethylsilyl trifluoromethanesulfonate gave the 1,2-cis-configurated glycosylphosphonates 2 , 4 , 8 , 10 , 14 , 16 , 20 , and 22 as the major anomers and the 1,2-trans-configurated glycosylphosphonates 3 , 5 , 9 , 11 , 15 , 17 , 21 , and 23 as the minor anomers. The 1,2-cis-configurated phosphonates 4 , 10 , 16 , and 22 were deprotected to give the (β-D -glucopyranosyl)phosphonate 6 , the (β-D -mannopyranosyl)phosphonate 12 , the (β-D -ribofuranosyl)phosphonate 18 , and the (β-D -arabinofuranosyl)phosphonate 24 , respectively, in high yields. The preferred formation of 1,2-cis-configurated phosphonates is explained by postulating an equilibrium between the anomeric phosphonium-salt intermediates (such as 25 and 26 ) and a stabilization of the cis-configurated salts through formation of a pentacoordinated species (such as 28 ).  相似文献   

9.
The reaction of diethyl phosphonate with Schiff bases derived from aldehydes and ketones in the presence of cadmium iodide is strongly accelerated by microwave irradiation, and the corresponding α-aminophosphonates are formed in high yields.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 4, 2005, pp. 517–519.Original Russian Text Copyright © 2005 by Kabachnik, Zobnina, Beletskaya.  相似文献   

10.
A cationic, pentanuclear aluminium phosphonate cage, [L(4)Al(5)Cl(6)(THF)(6)]Cl, 1, supported by (phthalimidomethyl) phosphonate, (L), has been synthesized and characterized. This polynuclear cage features the phosphonate ligand in an unusual coordination mode, supporting five aluminium atoms in two different environments. In comparison, the aqueous reaction of LH(2) with In(ClO(4))(3) afforded [{(LH)In(H(2)O)}(H(2)O)(2)(ClO(4))](n), 2, an indium(iii) phosphonate coordination polymer, that has been crystallographically characterized. Reactions of the corresponding phosphonate ester, diethyl (phthalimidomethyl) phosphonate, (L'), with GaI(3) and InCl(3) afforded the simple coordination complexes, [L'·GaI(3)], 3, and [L'·InCl(3)(THF)], 4.  相似文献   

11.
Reactions of N-methyliminobis(methylenephosphonic acid), CH(3)N(CH(2)PO(3)H(2))(2) (H(4)L), with divalent metal acetates under different conditions result in metal diphosphonates with different structures. Mn(H(3)L)(2).2H(2)O (complex 1) with a layer structure was prepared by a layering technique. It is triclinic, P1 macro with a = 9.224(3) A, b = 9.780(3) A, c = 10.554(3) A, alpha = 82.009(6) degrees, beta = 74.356(6) degrees, gamma = 89.853(6) degrees, Z = 2. The Mn(II) ion is octahedrally coordinated by six phosphonate oxygen atoms from four ligands, two of them in a bidentate and two in a unidentate fashion. Each MnO(6) octahedron is further linked to four neighboring MnO(6) octahedra through four bridging phosphonate groups, resulting in a two-dimensional metal phosphonate (002) layer. These layers are held together by strong hydrogen bonds between uncoordinated phosphonate oxygen atoms. The zinc complex Zn(3)(HL)(2) (complex 2) was synthesized by hydrothermal reactions (4 days, 438 K, autogenous pressure). It is monoclinic, P2(1)/n with a = 7.7788(9) A, b = 17.025(2) A, c = 13.041(2) A, beta = 94.597(2) degrees, Z = 4. The structure of complex 2 features a 3D network built from ZnO(4) tetrahedra linked together by bridging phosphonate groups. Each zinc cation is tetrahedrally coordinated by four phosphonate oxygen atoms from four ligands, each of which connects with six zinc atoms, resulting in voids of various sizes. Magnetic measurements for the manganese complex shows an antiferromagnetic interaction at low temperature. The effect of the extent of deprotonation of phosphonic acids on the type of complex formed is discussed.  相似文献   

12.
The influence of micellar (Mi) and hexagonal (E) mesophases of the cetyldimethylethylammonium bromide—NaOH—water system (I) on the rates on alkaline hydrolysis ofO-p-nitrophenyl-O,O-diethyl phosphate (2),O-p-nitrophenyl-O-ethylethyl phosphonate (3), andO,O-di(p-nitrophenyl)methyl phosphonate (4) was studied by UV spectrophotometry. The binding constants of the substrates, critical micelle concentrations, and rate constants of reactions in the micellar phase were determined. In micellar solutions of systemI, a tenfold increase in the rates of alkaline hydrolysis of2–4 was observed. An increase in the degree of medium ordering during the formation of the E-phase results in a twofold acceleration of alkaline hydrolysis of2 and3 and in the inhibition of this process in the case of4. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1499–1504, August, 1998.  相似文献   

13.
>Wittig reagents 1a,b react with dicyanomethylene derivatives of fluorenone (3) and xanthone (4) to give the corresponding phosphoranylidenecyclobutylidene adducts 6a, 6b, 9a, and 9b. On the other hand, the reaction of Wittig–Horner reagents (2) with the same nitriles 3 and 4 afforded the respective phosphonate adduct 8 and the alkylated product 10. A mechanism that accounts for the formation of the new products is presented. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 263–269, 1999  相似文献   

14.
The first synthesis of an isosteric phosphonate analogue of the aminotriol lipid phytosphingosine (3), together with an improved synthesis of (2S,3S,4S)-phytosphingosine (2), are described. A key intermediate is 3-pentylidene acetal 9, which was prepared in two steps from dimethyl 2,3-O-benzylidene-d-tartrate (7).  相似文献   

15.
Short and efficient syntheses of functionalized (pyrrolidin-2-yl)phosphonate and (5-oxopyrrolidin-2-yl)phosphonate have been developed. The synthetic strategy involved the diastereospecific 1,3-dipolar cycloaddition of N-benzyl-C-(diethoxyphosphoryl)nitrone to cis-1,4-dihydroxybut-2-ene and dimethyl maleate, respectively. O,O-Diethyl 3-carbamoyl-4-hydroxy(5-oxopyrrolidin-2-yl)phosphonate was obtained from O,O-diethyl 2-benzyl-4,5-dimethoxycarbonyl(isoxazolidin-3-yl)phosphonate by hydrogenation and subsequent treatment with ammonia, whereas transformation of O,O-diethyl 2-benzyl-4,5-dihydroxymethyl(isoxazolidin-3-yl)phosphonate into O,O-diethyl 3-aminomethyl-4-hydroxy(pyrrolidin-2-yl)phosphonate was accomplished by mesylation followed by hydrogenolysis to undergo intramolecular cyclization and the introduction of amino group via ammonolysis. Stereochemistry of the isoxazolidine cycloadducts, as well as the final functionalized (pyrrolidin-2-yl)- and (5-oxopyrrolidin-2-yl)phosphonates were established based on conformational analyses using vicinal H–H, H–P, and C–P couplings and supported by the observed diagnostic NOESY correlation signals.  相似文献   

16.
Reactions of Ti(OiPr)4 with different phosphonic acids RPO3H2 (R = Ph, 4-CNPh, Me, tBu) in organic solvents have been investigated. In the presence of small amounts of water, the new molecular titanium oxide alkoxide phosphonates [Ti4(mu 3-O)(OiPr)5(mu-OiPr)3(RPO3)3].DMSO [R = Ph (1), Me (2), tBu (3), 4-CNPh (4)] were isolated. The single-crystal X-ray structure analyses of 1 and 2 revealed hexacoordinated titanium atoms and a connectivity of (111) for each phosphonate. Under rigorous exclusion of water, the reaction of Ti(OiPr)4 with tert-butylphosphonic acid in toluene gave the titanium phosphonate tetramer [Ti(OiPr)2(tBuPO3)]4 (5). A single-crystal X-ray structure analysis of 5 revealed a 5 + 1 coordination of the titanium atoms as a result of the (112) connectivity of each phosphonate; such a coordination mode has never been reported for a titanium phosphate, phosphonate, or phosphinate. Compounds 1-5 were characterized by FT-IR, 31P MAS NMR, and solution multinuclear NMR (1H, 13C(1H,) 31P(1H)) spectroscopies. 13C CP MAS NMR experiments were carried out on arylphosphonates 1 and 4. Solution NMR experiments were also used to investigate the exchange reaction between 1 and 2 and the conversion of 5 to [Ti4(mu 3-O)(OiPr)5(mu-OiPr)3(tBuPO3)3].iPrOH by partial hydrolysis in the presence of Ti(OiPr)4. The phosphonate clusters 1-5 are soluble in organic solvents and are likely intermediates in the sol-gel processing of inorganic-organic hybrids based on titanium oxide and phosphonate groups that we are currently developing.  相似文献   

17.
5‐{[(1E)‐(4‐methoxyphenyl)methylene]amino}‐1,3,4‐thiadiazole‐2‐thiol ( 1a ) reacts with trialkyl phosphites ( 2a–c ) to give the respective dialkyl phosphonate adducts ( 4a–c ). On the other hand, the reactions of trisdialkylaminophosphines ( 3a,b ) with 1a , 5‐{[(1E)‐(4‐phenyl)methylene]amino}‐1,3,4‐thiadiazole‐2‐thiol ( 1b ) yield the corresponding open dipolar structures 6a–c . In the case of the reaction of triethyl phosphite ( 2a ) with 1b , both the dialkyl phosphonate adduct ( 7 ) and the dipolar product ( 8a ) are obtained. Moreover, triisopropyl phosphite ( 2c ) reacts with 1b to give both the S‐alkyl and the N‐alkyl phosphonate adducts ( 9a,b ), respectively. Mechanisms are proposed to explain the formation of the new products, and their structures were confirmed on the basis of elemental analysis and spectral studies. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:594–601, 2001  相似文献   

18.
Reaction of N,N'-bis(phosphonomethyl)-1,10-diaza-18-crown-6 (H(4)L) with copper(II) acetate in 1:1 ethanol/water mixed solvents afforded a new crystal-engineered supramolecular metal phosphonate, Cu(H(2)L) (complex 1). By reaction of the same ligand with cadmium(II) nitrate in a 2:1 (M/L) ratio in methanol, a cadmium(II) complex with a 3D network structure was isolated, Cd(2.75)(L)(H(2)O)(7) x 1.5NO(3) x 7H(2)O x MeOH (complex 2). The copper(II) complex crystallized in the monoclinic space group P2(1)/c, with a =10.125(4), b = 14.103(6), and c = 14.537(6) A, beta = 91.049(8) degrees, V = 2075.4(16) A(3), and Z = 2. The Cu(II) ions in complex 1 are 6-coordinated by two phosphonate oxygen atoms, two nitrogen, and two oxygen atoms from the crown ether ring. Their coordination geometry can be described as Jahn-Teller-distorted octahedral, with elongated Cu-O(crown) distances (2.634(4) and 2.671(4) A for Cu(1) and Cu(2), respectively). The other two crown oxygen atoms remain uncoordinated. Neighboring two Cu(H(2)L) units are further interlinked via a pair of strong hydrogen bonds between uncoordinated phosphonate oxygen atoms, resulting in a one-dimensional supramolecular array along the a axis. The cadmium(II) complex is tetragonal, P4(2)/n (No. 86) with a = 20.8150(9) and c = 18.5846(12) A, V = 8052.0(7) A(3), and Z = 8. Among four cadmium(II) atoms in an asymmetric unit, one is 8-coordinated by four chelating phosphonate groups, the second one is 8-coordinated by 6 coordination atoms from a crown ring and two oxygen atoms from two phosphonate groups, the third Cd(II) atom is octahedrally coordinated by three aqua ligands and three phosphonate oxygen atoms from three phosphonate groups, and the fourth one is 6-coordinated by four aqua ligands and two oxygen atoms from two phosphonate groups in a distorted octahedral geometry. These cadmium atoms are interconnected by bridging phosphonate tetrahedra in such a way as to form large channels along the c direction, in which the lattice water molecules, methanol solvent, and nitrate anions reside. The effect of extent of deprotonation of phosphonic acids on the type of complex formed is also discussed.  相似文献   

19.
Reaction of CuCl2 ·2H2O and 2,4,6‐tris(phosphorylmethyl)mesitylene (H6tpmm) in H2O?DMF solution at room temperature afforded green crystals of [Cu6(H2tpmm)3(H2O)9]·3H2O ( 1 ), which were characterized by Fourier transform infrared (FT‐IR), thermogravimetric (TG) analysis, and powder X‐ray diffraction (PXRD). The solid‐state structure of 1 reveals a one‐dimensional chain array of M4L2 ‐metallocages constituted by the connection of two kinds of metallocage units, namely MC‐A (phosphonate/water‐bridged) and MC‐B (phosphonate‐bridged only), via μ2‐O(phosphonate)? Cu bonds in ABAABA order. The tris‐phosphonate ligand H6tpmm is partially deprotonated to form H2tpmm4?, which displays a cis,cis,cis conformation to bridge six Cu(II) centers via two monodentate phosphonate groups in a η 0:η 0:η 1‐bonding mode and one tridentate phosphonate group in a μ4, η 1:η 1:η 2‐bondingng mode.  相似文献   

20.
An important building block, diethyl [(5-amino-4-cyano-3-methylsulfanyl-pyrazol-1-yl)–(4-fluorophenyl)methyl] phosphonate (3) was efficiently synthesized via the condensation of 1-hydrazino-1-(4-fluorophenyl)methyl phosphonate (1) with 2-[bis(methylthio)methylene]malononitrile (2).3 reacted with triethyl orthoformate to afford diethyl [(4-cyano-5-ethoxymethyleneamino-3-methylsulfanyl-pyrazol-1-yl)-(4-fluorophenyl)methyl] phosphonate (4), which reacted with various acyl hydrazines in refluxing 2-methoxyethanol to provide the target compounds (5) in good yields directly. The results of preliminary bioassay indicated that compounds 5 possess potent herbicidal activity against the roots of monocotyledonous (barnyard grass) and dicotyledonous (oil rape) plants, and could be further developed as potential herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号