共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kazuo Itoya Hidetsugu Sawada Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1994,32(15):2947-2951
A facile one-step method for the synthesis of aliphatic polybenzoxazoles has been developed. Thus, a series of aliphatic polybenzoxazoles having inherent viscosities of 0.2–0.7 dL/g in concentrated sulfuric acid were successfully synthesized by the melt polycondensation of alipatic dinitriles with 4,4′-diamino-3,3′-dihydroxybiphenyl (AHB) or its hydrochloride (AHB–HCl) with the elimination of ammonia or ammonium chloride, respectively. Monomer AHB–HCl was more reactive than the parent AHB, thereby affording higher molecular weight polybenzoxazoles in a shorter reaction time. The aliphatic polybenzoxazoles having 6–10 methylene units were highly crystalline with melting temperatures in the range of 187–308°C, which were stable up to 400°C in a melt state in nitrogen. © 1994 John Wiley & Sons, Inc. 相似文献
3.
J. G. Liu M. H. He H. W. Zhou Z. G. Qian F. S. Wang S. Y. Yang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(1):110-119
Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8‐dimethylbicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet–visible absorption lower than 310–320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5–2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110–119, 2002 相似文献
4.
5.
Yu. N. Lazareva M. N. Vidyakin A. Yu. Alentiev M. Yu. Yablokova A. A. Kuznetsov I. A. Ronova 《Polymer Science Series A》2009,51(10):1068-1074
Gas-separating membrane characteristics of polyimide films composed of the common fragment of benzophenone-3,3′,4,4′-tetracarboxylic
dianhydride and diamines of varying structure were studied. Permeability coefficient P, diffusion coefficient D, and solubility coefficient S for H2, CO, CO2, and CH4 were determined. The polyimide derived from m-phenylenediamine exhibited the best gas-separating properties. A relationship between the chain rigidity, free volume, and
transport parameters (P, D, S, and selectivity) of polyimide was established on the basis of the data. It was shown that there is an optimal chain rigidity
for the studied polyimides that results in polymer structurization during film preparation and corresponds to high separation
selectivity. 相似文献
6.
Guey-Sheng Liou Masaki Maruyama Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1998,36(12):2021-2027
A new aromatic tetracarboxylic dianhydride having a crank and twisted noncoplannar structure, 2,2′-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with biphenyl-2,2′-diol, followed by hydrolysis and cyclodehydration. The biphenyl-2,2′-diyl-containing aromatic polyimides having inherent viscosities up to 0.66 dL/g were obtained by the conventional two-step procedure starting from the dianhydride monomer and various aromatic diamines. Most of the polyimides were readily soluble in amide-type solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. The aromatic polyimides had glass transition temperatures in the range of 205–242°C, and began to lose weight around 415°C, with 10% weight loss being recorded at about 500°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2021–2027, 1998 相似文献
7.
Yaw-Terng Chern 《Journal of polymer science. Part A, Polymer chemistry》1996,34(1):125-131
New polyimides containing diamantane units were prepared by a conventional two-step method starting from 1,6-diaminodiamantane and aromatic dianhydrides. The intermediate poly(amic acid)s had inherent viscosities of 0.33–0.55 dL/g. These polyimides did not decompose below 400°C in air or nitrogen atmosphere, and the temperature at 5% weight loss were above 491°C. The glass transition temperatures of the polyimides were found to be 375–429°C by DSC. These polyimides had almost the same semicrystalline patterns and exhibited crystalline diffraction peak (2 θ) at around 15°. The polyimide Vb exhibited a melting endothermic peak at 514°C. © 1996 John Wiley & Sons, Inc. 相似文献
8.
Yasufumi Watanabe Yuji Shibasaki Shinji Ando Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2004,42(1):144-150
We prepared new semiaromatic polyimides from alicyclic dianhydrides and aromatic diamines containing adamantyl and biadamantyl units. Polycondensations were performed in 1‐methyl‐2‐pyrrolidinone at room temperature for 7 h and then 80 °C for 23 h, giving poly(amic acid)s with inherent viscosities up to 0.58 dL/g. Poly(amic acid)s were converted to corresponding poly(imide)s by thermal treatment. Poly(imide)s showed relatively high thermal stability (5% weight loss around 450 °C) and low dielectric constants (2.69–2.79). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 144–150, 2004 相似文献
9.
Yoshiyuki Oishi Mina Ishida Masa-Aki Kakimoto Yoshio Imai Toshikazu Kurosaki 《Journal of polymer science. Part A, Polymer chemistry》1992,30(6):1027-1035
New aromatic polyimides containing triphenylamine unit were prepared by two different methods, i.e., a conventional two-step method starting from 4,4′-diaminotriphenylamine and aromatic tetracarboxylic dianhydrides and the one-step thioanhydride method starting from the aromatic diamine and aromatic tetracarboxylic dithioanhydrides. Both procedures yielded high-molecular-weight polyimides with inherent viscosities of 0.47–1.17 dL/g. Some of these polymers were soluble in organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, and pyridine. All the polyimides afforded transparent, flexible, and tough films, and the color varied from pale yellow to dark red, depending markedly on the tetracarboxylic acid components. The glass transition temperatures (Tgs) of these polyimides were in the range of 287–331°C and the 10% weight loss temperatures were above 520°C in air. The polyimides prepared by the one-step method exhibited better solubility in organic solvents and had somewhat lower Tgs than the polymers prepared by a conventional two-step method. 相似文献
10.
11.
Ki Hong Park Takashi Tani Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1998,36(11):1767-1772
A series of new soluble aromatic polyimides with inherent viscosities of 0.65–1.12 dL/g were synthesized from 1,3-bis(4-aminophenyl)-4,5-diphenylimidazolin-2-one and various aromatic tetracarboxylic dianhydrides by the conventional two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polyimides could also be prepared by the one-pot procedure in homogeneous m-cresol solution. Most of the tetraphenyl-pendant polyimides were soluble in organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and m-cresol. Some polyimides gave transparent, flexible, and tough films with good tensile properties. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyimides were in the range of 287–326 and 520–580°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1767–1772, 1998 相似文献
12.
Guey-Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》1998,36(11):1937-1943
Aromatic tetracarboxylic dianhydride having crank and twisted noncoplanar structure, 2,2′-bis(3,4-dicarboxyphenoxy)-1,1′-binaphthyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with 2,2′-dihydroxy-1,1′-binaphthyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). Binaphthyl-2,2′-diyl–containing novel aromatic polyimides having inherent viscosities up to 0.67 dL/g were obtained by the one-step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and pyridine. These aromatic polyimides had glass transition temperatures in the range of 280–350°C, depending on the nature of the diamine moiety. All polymers were stable up to 400°C, with 10% weight loss being recorded above 485°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1937–1943, 1998 相似文献
13.
Yoshio Imai Kazuo Itoya Masami Kanamaru Masa‐Aki Kakimoto 《Journal of polymer science. Part A, Polymer chemistry》2002,40(11):1790-1795
New phenolic hydroxyl‐pendant aromatic polyimides were synthesized with the N‐silylated diamine method in two steps: the ring‐opening polyaddition of tetrakis(trimethylsilyl)‐substituted 4,4′‐diamino‐3,3′‐dihydroxybiphenyl to various aromatic tetracarboxylic dianhydrides, giving trimethylsiloxy‐pendant poly(amic acid) trimethylsilyl esters, and thermal imidization. The hydroxyl‐bearing polyimides were amorphous but insoluble in organic solvents. They had glass‐transition temperatures greater than 370 °C and temperatures of 10% weight loss greater than 415 °C in nitrogen. The hydroxyl‐pendant polypyromellitimide film had a high tensile strength and a high modulus of 310 MPa and 10 GPa, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1790–1795, 2002 相似文献
14.
Claudio A. Terraza Jin‐Gang Liu Yasuhiro Nakamura Yuji Shibasaki Shinji Ando Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1510-1520
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008 相似文献
15.
Masaru Yoneyama Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1989,27(6):1985-1992
Aliphatic–aromatic polyamides were synthesized by the palladium-catalyzed polycondensation of aliphatic diamines, aromatic dibromides, and carbon monoxide. The effects of variables, such as the kind and amount of base, reaction temperature, and the kind of palladium catalyst were investigated in detail on the reaction of hexamethylenediamine and bis(4-bromophenyl) ether with carbon monoxide. Inherent viscosities of the polyamides were between 0.13 and 1.21 dL/g and varied markedly with the structure of the diamine component. Solubility of the polyamides decreased with increase of chain length of aliphatic diamines, and the polyamides derived from p-dibromobenzene was insoluble in organic solvents except for m-cresol. Polyamides obtained from primary aliphatic diamines began to decompose at 210–250°C in air due to decomposition of the aliphatic chain. 相似文献
16.
17.
John A. Mikroyannidis 《Journal of polymer science. Part A, Polymer chemistry》1996,34(16):3389-3397
New aromatic polyamide and polyimides were prepared from di(aminophenyl)acetylenediurea. In addition, model compounds were synthesized and their IR spectra were in agreement with those of the corresponding polymers. The polymers were amorphous and readily soluble in polar aprotic solvents (DMF, NMP, DMSO) and certain acids (H2SO4, CCl3COOH). The hydrophilicity of polyamide was estimated by measuring the isothermal water absorption. The polyamide softened at 260°C but no softening was observed for polyimides. The glass transition temperatures of polymers were determined by the TMA method and they were in the range of 235–310°C. The polymers were stable up to 359–404°C in N2 or air and afforded char yields of 53–65% at 800°C in N2. © 1996 John Wiley & Sons, Inc. 相似文献
18.
19.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(10):1058-1066
Two novel bio‐based diamines are synthesized through introduction of renewable 2,5‐furandicarboxylic acid (2,5‐FDCA), and the corresponding aromatic polyimides (PIs) are then prepared by these diamines with commercially available aromatic dianhydrides via two‐step polycondensation. The partially bio‐based PIs possess high glass transition temperatures (Tgs) in the range from 266 to 364 °C, high thermal stability of 5% weight loss temperatures (T5%s) over 420 °C in nitrogen and outstanding mechanical properties with tensile strengths of 79–138 MPa, tensile moduli of 2.5–5.4 GPa, and elongations at break of 3.0–12.3%. Some colorless PI films (PI‐1‐b and PI‐1‐c) with the transmittances at 450 nm over 85% are prepared. The overall properties of 2,5‐FDCA‐based PIs are comparable with petroleum‐based PI derived from isophthalic acid, displaying the potential for development of innovative bio‐based materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1058–1066 相似文献
20.
Facile syntheses of hyperbranched polyimides were realized by the polymerization of A2 + BB′2 monomers, 2,2‐bis(3,4‐dicarboxylphenyl) hexafluoropropane dianhydride (6FDA) + 2,4,6‐triaminopyrimidine (TAP), performed by mixing the monomers together in N‐methylpyrrolidone at 17% w/v concentrations with molar ratios of 6FDA:TAP ranging from 1:1 to 2:1. The lower reactivity of 2‐amino as compared with 4‐/6‐amino in TAP, demonstrated by 1H NMR, was probably the main reason for no gelation formed during the polymerization although monomer conversions surpassed the theoretical gel points. Fourier transform infrared spectroscopy and NMR were used to verify the structures of the obtained polymers. 1H NMR analysis indicated the degrees of branching (DB) of the polymers increased from 36 to 83% with the molar ratios of 6FDA:TAP increasing from 1:1 to 2:1. Molecular weights were determined by gel permeation chromatography, and inherent viscosities were measured. Glass‐transition temperature values, determined by differential scanning calorimetry, decreased when DB increased, and thermogravimetric analysis reflected the excellent thermal stability of the obtained hyperbranched polyimides. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4563–4569, 2002 相似文献