首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3-(2-, 3- and 4-Pyridyl)-2-methoxythiophenes have been prepared in good yields through the Pd(0)-cat-alyzed coupling of the three isomeric bromopyridines with 3-trimethylstannyl-2-methoxythiophene. This compound was prepared through halogen-metal exchange of 3-bromo-2-methoxythiophene followed by stannylation. 3-Bromo-2-methoxythiophene was prepared by dibromination and α-debromination of 2-methoxythiophen. Most attempts to demethylate 2-methoxy-3-pyridylthiophenes using a large variety of reagents failed, probably due to the instability and high reactivity of the desired 3-pyridyl-2-hydroxythiophene systems. Only 2-methoxy-3-(3-pyridyl)thiophene reacted with boron tribromide to give 3-(3-pyridyl)-3-thiolene-2-one, which only was stable in ether solution at ?20°. The attempted demethylation of 2-methoxy-3-(2-pyridyl)thiophene with trimethylsilane chloride/sodium iodide in refluxing acetonitrile led to a dimer. Demethylation of the 2-methoxy-3-pyridylthiophenes with dibenzyl diselenide and sodium borohydride gave 3-pyridylthiophan-2-ones. A number of other routes to prepare 3-pyridyl-2-hydroxythiophenes were also explored, but none of them gave the desired compounds. On the other hand, the 4-(2-, 3-, and 4-pyridyl)-2-hydroxythiophene systems could easily be prepared by hydrogen peroxide oxidation of the corresponding 4-pyridyl-2-thiopheneboronic esters, which were obtained from 2-bromo-4-pyridylthiophenes by halogen-metal exchange followed by reaction with ethyl borate. The 2-bromo-4-pyridylthiophenes were prepared by dibromination of the known 3-pyridylthiophenes to the 2,5-dibromo derivatives, and removal of the 2-bromine by halogen-metal exchange at ?100°, followed by hydrolysis. The 1H nmr and ir spectroscopic investigations show that these quite stable 2-hydroxythiophene systems exist exclusively in the 4-pyridyl-3-thiolen-2-one forms.  相似文献   

3.
5-(2-, 3- and 4-Pyridyl)-2-t-butoxythiophenes have been prepared in very good yields by Pd(0) catalyzed cross-coupling of the three isomeric bromopyridines with 5-trimethylstannyl-2-t-butoxythiophene derived from 2-bromothiophene via 2-t-butoxythiophene. Dealkylation of 5-(2-, 3- and 4-pyridyl)-2-t-but-oxythiophenes with boron trifluoride etherate in dichloromethane at room temperature led to predominant formation of rearranged products, 5-(2- and 3-pyridyl)-3-t-butyl-3-thiolene-2-ones, together with a small amount of 5-(2- and 3-pyridyl)-2-hydroxythiophenes as a mixture of two tautomeric keto forms in the case of the 2-pyridyl and the 3-pyridyl isomers, and exclusive formation of rearranged product in the case of the 4-pyridyl isomer. However, dealkylation of 2-methoxy-5-(2-, 3- and 4-pyridyl)thiophenes, prepared similarly to the 5-(2-, 3- and 4-pyridyl)-2-t-butoxythiophenes, with boron tribromide under the same reaction conditions as above resulted exclusively in the tautomeric mixture of 5-(2- and 3-pyridyl)-3-thiolene-2-ones and 5-(2- and 3-pyridyl)-4-thiolene-2-ones in the case of the 2-pyridyl and 3-pyridyl isomers. In the case of the 4-pyridyl isomer polymerization took place.  相似文献   

4.
2-, 3-, and 4-Perfluoroalkylthiopolychloropyridines have been synthesized using perfluoroalkylated thiol and disulfide derivatives of polychloropyridines via the thermal decomposition of Xe(II) bisperfluoroalkylcarboxylates. It was shown that their formation takes place from the starting thiols only through the formation of the disulfides. It was found that 3,4,5,6-tetrachloro-2-trifluoromethylthiopyridine reacts with potassium p-tolylthiolate with retention of the fluorine containing fragment and substitution of the chlorine atom in position 4 of the pyridine ring by the tolythio group.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Studies on Oxide Catalysts. XXIX. Spectroscopic and Catalytic Investigations on Ni2+-, Co2+-, Cr3+-, and Cu2+-exchanged Mordenites NiNaM, CoNaM, CrNaM und CuNaM (M = Mordenite) have been characterized by UV-VIS, EPR and i.r. spectroscopy and the results were compared with the catalytic activity and the activity-time-dependence in the cracking of n-octane and with the shape selectivity in the cracking of a n-octane and isooctane mixture. Water molecules acting as ligands of the exchanged cations are able to dissociate yielding Brönsted acidity. Brönsted sites may be regarded as catalytic active centers in the cracking reaction. Unreduced transition metal cations facilitate the “coking” of the mordenite. The unreduced chromium and cobalt cations for which a position within the main channel is expected, affect the diffusion of the branched paraffin molecule thus increasing shape selectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号