首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

2.
Diblock copolymer membranes having a fluorinated segment and a sulfonic acid segment were prepared by living radical polymerization, solution casting, and crosslinking, followed by heat treatment. Diblock copolymers of 2,3,4,5,6‐pentafluorostyrene (PFS)/4‐(1‐methylsilacyclobutyl)styrene (SBS) and neopentyl styrenesulfonate (SSPen) (poly(PFS‐co‐SBS)‐b‐polySSPen)s were synthesized by nitoroxy‐mediated living radical polymerization. Self‐standing crosslinked membranes were obtained by casting a THF solution of the block copolymer with Pt catalyst. Heat treatment of the membrane at 230 °C induced decomposition of the neopentyl sulfonate esters to provide block copolymer membranes having a fluorinated segment and a free sulfonic acid segment. It was confirmed that the block copolymer with a high sulfonic acid content exhibited high ion exchange capacity and high proton conductivity as well as high thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4479–4485, 2008  相似文献   

3.
Block polymerization of 1,1-diethylsilacyclobutane with styrene derivatives and methacrylate derivatives was investigated. Sequential addition of styrene to a living poly(1,1-diethylsilabutane), which was prepared from phenyllithium and 1,1-diethylsilacyclobutane in THF–hexane at −48°C, gave poly(1,1-diethylsilabutane)-b-polystyrene. Similarly, addition of 4-(tert-butyldimethylsiloxy)styrene to the living poly(1,1-diethylsilabutane) provided poly(1,1-diethylsilabutane)-b-poly(4-(tert-butyldimethylsiloxy)styrene). Poly(1,1-diethylsilabutane)-b-poly(methyl methacrylate) was obtained by treatment of living poly(1,1-diethylsilabutane) with 1,1-diphenylethylene followed by an addition of methyl methacrylate. Poly(1,1-diethylsilabutane)-b-poly(2-(tert-butyldimethylsiloxy)ethyl methacrylate) was also synthesized by adding 2-(tert-butyldimethylsiloxy)ethyl methacrylate to the living poly(1,1-diethylsilabutane) which was end-capped with 1,1-diphenylethylene in the presence of lithium chloride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2699–2706, 1998  相似文献   

4.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The transformations of living cationic polymerization to ATRP to form the block and graft copolymers of β-pinene with styrene were performed. Poly(β-pinene) carrying benzyl chloride terminal [poly(β-p)StCl] was prepared by capping the living poly(β-pinene), which was obtained with 1-phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, with a few units of styrene. Poly(β-p)StCl, in conjunction with CuCl and bpy, could initiate the ATRP of styrene and gave well-defined block copolymer of β-pinene and styrene. In contrast, tert-alkyl-chlorine-capped poly(β-pinene) [poly(β-p)Cl] obtained by living cationic polymerization of β-pinene per se without capping of styrene gave a mixture of desired block copolymers and unreacted poly(β-p)Cl due to the low initiating reactivity of poly(β-p)Cl. Brominated poly(β-pinene) synthesized by the quantitative bromination of poly(β-pinene) using NBS was also used to initiate the ATRP of styrene in the presence of CuBr and bpy to prepare the graft copolymer of β-pinene and styrene. The first-order kinetic characteristic and linear increment of molecule weight with the increasing of monomer conversion indicated the living nature of this ATRP grafting.  相似文献   

6.
Hydrolysis of 4‐acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4‐acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4‐dioxane, afforded the corresponding narrow dispersed materials with phenolic groups which were substantially free from crosslinkages. Gel permeation chromatographic (GPC) analysis of these polymers revealed different extents of molecular weight distribution (MWD) broadening for the hydrolysis products for the different structures. On the other hand, by NaOH catalyzed deprotection, the 4‐acetoxystyrene polymers including triblock copolymer poly(4‐acetoxystyrene‐b‐isobutylene‐b‐4‐acetoxystyrene) suffered from some degrees of coupling or even gelation, except for poly(styrene‐b‐4‐acetoxystyrene‐b‐styrene) which also by this method could be conveniently converted to its phenolic product. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 627–633, 1999  相似文献   

7.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

8.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

9.
Valorization of poly(ethylene terephthalate) (PET) waste has been achieved using glycolysis. The resulting diols were employed for the synthesis of triblock copolymers by atom transfer radical polymerization using copper (I) bromide and (1,1,4,7,10,10)‐hexamethyltriethylenetetramine as catalyst system. Macroinitiator was obtained after depolymerization of PET waste followed by functionalization of the obtained glycolysate with 2‐bromoisobutyrate bromide. Polymerization of styrene (S) and glycidyl methacrylate (GMA) has been achieved leading to PS‐b‐PETG‐b‐PS and (PS‐stat‐PGMA)‐b‐PETG‐b‐(PS‐stat‐PGMA) triblock copolymers. Best results were obtained at 100 °C. At this temperature, termination reaction were negligible and the measured number‐average molar mass of the product increased linearly with monomer conversion in agreement with the theoretical Mn with low polydispersity products achieved. Polymers were also characterized by 1H NMR. This work presents a original valorization of PET waste as (PS‐stat‐PGMA)‐b‐PETG‐b‐(PS‐stat‐PGMA) copolymer could be used as heat curable coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 433–443, 2008  相似文献   

10.
A series of ABA triblock copolymers of methyl methacrylate (MMA) and dodecyl methacrylate (DMA) [poly(MMA‐b‐DMA‐b‐MMA)] (PMDM) were synthesized by Ru‐based sequential living radical polymerization. For this, DMA was first polymerized from a difunctional initiator, ethane‐1,2‐diyl bis(2‐chloro‐2‐phenylacetate) with combination of RuCl2(PPh3)3 catalyst and nBu3N additive in toluene at 80 °C. As the conversion of DMA reached over about 90%, MMA was directly added into the reaction solution to give PMDM with controlled molecular weight (Mw/Mn ≤ 1.2). These triblock copolymers showed well‐organized morphologies such as body centered cubic, hexagonal cylinder, and lamella structures both in bulk and in thin film by self‐assembly phenomenon with different poly(methyl methacrylate) (PMMA) weight fractions. Obtained PMDMs with 20–40 wt % of the PMMA segments showed excellent electroactive actuation behaviors at relatively low voltages, which was much superior compared to conventional styrene‐ethylene‐butylene‐styrene triblock copolymer systems due to its higher polarity derived from the methacrylate backbone and lower modulus. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

12.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A new methodology is successfully used for the concurrent synthesis of three different copolymers; diblock, triblock, and three‐armed star‐block copolymers of styrene and isoprene via the living anionic polymerization with control over the molecular weight and weight fractions of each block. The room temperature polymerization process has resulted in the well defined linear and radial block copolymers, when the living di‐block of poly(styrene‐b‐isoprene) was coupled using cheap and readily available malonyl chloride as a novel coupling agent giving nearly 100% yield. The resulting block copolymers have narrow polydispersity index (PDI = 1.01–1.09) with a good agreement between the calculated and the observed molecular weights. The results are further supported by fractionation of the block copolymers by reversed‐phase temperature gradient interaction chromatography (RP‐TGIC) technique followed by size exclusion chromatography (SEC). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2636–2641, 2010  相似文献   

14.
Controlled free radical polymerization of sugar-carrying methacrylate, 3-O-methacryloyl-1,2 : 5,6-di-O-isopropylidene-d-glucofuranose (MAIpGlc) was achieved by the atom transfer radical polymerization (ATRP) technique with an alkyl halide/copper-complex system in veratrole at 80°C. The time–conversion first-order plot was linear and the number-average molecular weight increased in direct proportion to the ratio of the monomer conversion to the initial initiator concentration, providing PMAIpGlc with a low polydispersity. The sequential addition of the two monomers styrene (S) and MAIpGlc afforded a block copolymer of the type PS-b-PMAIpGlc. The acidolysis of the homo- and block copolymers gave well-defined glucose-carrying water-soluble polymers PMAGlc and PS-b-PMAGlc, respectively. The amphiphilic PS-b-PMAGlc block copolymer exhibited a microdomain surface morphology with spherical PS domains in a PMAGlc matrix. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2473–2481, 1998  相似文献   

15.
A novel ABA triblock copolymer comprising double‐bond‐containing poly(phenoxyallene) (PPOA) and polystyrene (PS) segments was synthesized by sequential conventional free radical polymerization and atom transfer radical polymerization (ATRP) via the site transformation strategy. A new bifunctional initiator containing azo and Br‐containing ATRP initiating groups was prepared using 2‐bromopropionyl chloride, hydroquinone, and 4,4′‐azobis(4‐cyanopentanoic acid) as starting materials. Conventional free radical homopolymerization of phenoxyallene with cumulated double bond was performed in toluene to provide a polyallene‐based macroinitiator bearing ATRP initiating groups at both ends, which is stable under UV irradiation and free radical circumstances. PS‐b‐PPOA‐b‐PS triblock copolymer was then obtained by bulk ATRP of styrene initiated by PPOA‐based macroinitiator. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1366–1372  相似文献   

16.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

17.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   

18.
This study describes a novel precision synthesis strategy for graft copolymers using Friedel–Crafts‐type termination reaction between a cationically prepared poly(styrene derivative) and the naphthyl side groups from a poly(vinyl ether) main chain. The pendant alkoxynaphthyl groups on the poly(vinyl ether) efficiently terminated the living cationic polymerization of p‐acetoxystyrene (AcOSt) with SnCl4 in the presence of ethyl acetate as an added base. This research provides the first example of a well‐defined graft copolymer prepared using this method. The resulting polymer contained 40 poly‐(AcOSt) branches, as calculated from the Mw determined via gel permeation chromatography–MALS analysis, which was in good agreement with the estimated number of branches obtained from 1H NMR analysis. The acetoxy groups in the grafted poly(AcOSt) chains were easily converted into phenolic hydroxy groups under basic conditions. The as‐obtained graft copolymer with poly(p‐hydroxystyrene) side chains exhibited a pH‐sensitive phase separation in water. The synthetic method for preparing the graft copolymers was also effective in the living cationic polymerizations of other styrene derivatives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4675–4683  相似文献   

19.
A series of dodecyl‐based monofunctional trithiocarbonate chain transfer agents (CTAs) were successfully synthesized, toward the reversible addition‐fragmentations chain transfer (RAFT) polymerization of styrene. The CTAs were used as initiators for RAFT polymerization, in the absence of the conventional free radical initiator, at higher temperature. Polystyrene (PS) of narrow polydispersity index (PDI) is synthesized. Subsequently, poly(styrene‐b‐benzyl methacrylate) diblock and poly(styrene‐b‐benzyl methacrylate‐b‐2‐vinyl pyridine) triblock copolymers were synthesized from the PS macro‐RAFT agent by simply heating with the second and third monomer, respectively. These experiments suggest that it should be possible to control the RAFT polymerization initiated by a CTA through the adjustment of the temperature of polymerization in such manner that initiation is tailored to proceed at faster rate (at higher temperature) in comparison to propagation (lower temperature). For the specific CTAs studied in this work, the polymerization rate of styrene was high in the case of the reinitiating cyano (CN)‐substituted group (R group) compared to the other groups studied. The results further show that 4‐cyano pentanoic acid group is superior to the other R groups used for the RAFT polymerization of styrene, especially based on the polydispersity at a given conversion as well as the variation in the expected and experimental number‐average‐molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号