首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The new monomer, α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (METFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (ETA) in order to prepare polymers containing 5-FU moiety. Poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(METFU)], poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouraci-co-acrylic acid) [poly(METFU-co-AA)], and poly(α-methoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(METFU-co- VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as an initiator. The synthesized METFU and the polymers were identified by FTIR and 1H-NMR spectroscopies. The contents of METFU in poly(METFU-co-AA) and poly(METFU-co-VAc) determined by elemental analysis were 52 and 60 mol %, respectively. The average molecular weights and polydispersity indices determined with GPC were as follows: M n = 9,400, M w = 11,400 M w/M n = 1.21 for poly(METFU), M n = 14,400, M w = 26,800, M w/M n = 1.86 for poly(METFU-co-AA), and M n = 23,100, M w = 33,000, M w/M n = 1.43 for poly(METFU-co-VAc). The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines, and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of synthesized polymers against mice bearing the sarcoma 180 tumor cell line were greater than those of 5-FU at concentrations of 0.8 and 80 mg/kg. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2177–2184, 1998  相似文献   

2.
The new monomer, α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EETFU), was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl chloride. Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylaceto-phenone. The synthesized samples were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopes, elemental analysis, and gel permeation chromatography. The EETFU contents in poly(EETFU-co-AA) and poly(EETFU-co-VAc) were 40 and 37 mol %, respectively. The number average molecular weights were in range from 8,400 to 10,300. The in vitro cytotoxicities of synthesized samples were evaluated against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line. The range of IC50 values obtained from the in vitro test for synthesized samples were 0.03–0.16 µg/mL against cancer cell lines. The in vitro cytotoxicities of polymers were beter than 5-FU. The in vivo antitumor activities of synthesized monomer and polymers were also investigated by mice bearing the sarcoma 180 tumor cells. The in vivo antitumor activities of the synthesized monomer and polymers were greater than those of 5-FU at corresponding dosage concentrations. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2619–2627, 1999  相似文献   

3.
The new monomer, 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl-5-fluorouracil (ETPFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl chloride (ETPC). The homopolymer of ETPFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerizations. The synthesized ETPFU and polymers were identified by Fourier transfer infrared (FTIR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of ETPFU units in poly(ETPFU-co-AA) and poly(ETPFU-co-VAc) were 26 and 32 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range from 8,800 to 10,700. The in vitro cytotoxicities of the samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as a cancer cell line and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of polymers against Balb/c mice bearing the sarcoma 180 tumor cells were greater than those of 5-FU at all doses tested. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2113–2120, 1999  相似文献   

4.
The new monomer α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EMTFU) was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl chloride (EMTC). Poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(EMTFU)], poly(α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-acrylic acid) [poly(EMTFU-co-AA)], and poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(EMTFU-co-VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as the photoinitiator. The synthesized EMTFU and its polymers were identified by Fourier transfer infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of EMTFU in poly(EMTFU-co-AA) and poly(EMTFU-co-VAc) determined by elemental analysis were 46 and 70 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range of 17,200–20,900. The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and AC2F as a normal cell line. The cytotoxicities of 5-FU and synthesized samples against cancer cell lines increased in following orders: 5-FU ≈ EMTFU > poly(EMTFU-co-AA) > poly(EMTFU) > poly(EMTFU-co-VAc). The in vivo antitumor activities of the synthesized samples against mice bearing the sarcoma 180 tumor cell line were evaluated. The in vivo antitumor activities of EMTFU and its polymers were greater than those of 5-FU at a dosage of 80 mg/kg. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2985–2992, 1998  相似文献   

5.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

6.
The new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETEFU), was synthesized from 5‐fluorouracil (5‐FU) and 3,6‐endo‐methylene‐1,2,3,6‐tetrahydophthalimidoethanoyl chloride (ETEC). Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerization reactions using 2,2‐dimethoxy‐2‐phenylacetophenone (DMP) as the photoinitiator. The synthesized ETEFU and polymers were identified by FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The contents of ETEFU units in poly(ETEFU‐co‐AA) and poly(ETEFU‐co‐VAc) were 20 and 17 mol%, respectively. The number‐average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were 4,600 to 10,700 g mol−1. In vitro cytotoxicities of samples were evaluated with cancer cell lines [mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937)] and a normal cell line [mouse liver cells (AC2F)]. Cytotoxicities of 5‐FU and synthesized samples against the cancer cell lines were ranked as follows: ETEFU > poly(ETEFU) > 5‐FU > poly(ETEFU‐co‐AA) > poly(ETEFU‐co‐VAc). The in vivo antitumor activities of poly(ETEFU) and poly(ETEFU‐co‐AA) against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses except for the activity of poly(ETEFU) at 0.8 mg/kg. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1589–1595, 1999  相似文献   

7.
A new monomer, maleimidoethanoyl‐5‐fluorouracil (MIEFU), was synthesized by the reaction of maleimidoethanoyl chloride and 5‐fluorouracil (5‐FU). The homopolymer of MIEFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The contents of the MIEFU units in poly(MIEFU‐co‐AA) and poly(MIEFU‐co‐VAc) were 18 and 30 mol %, respectively. The number‐average molecular weights of the synthesized polymers, as determined by gel permeation chromatography, ranged from 4900 to 9800. The in vitro cytotoxicities of the samples against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the following order: 5‐FU ≥ MIEFU > poly(MIEFU) > poly(MIEFU‐co‐AA) > poly(MIEFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all the doses tested. The inhibitions of the SV40 DNA replication of the samples were much greater than that of the control. The synthesized monomer and polymers showed more antiangiogenesis activity than the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1247–1256, 2000  相似文献   

8.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

9.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Poly(β-benzyl-L-aspartate) (PBLA) is an unusual polypeptide, which is capable of going into four different conformations, namely, left-handed α helix, right-handed α helix, ω helix, and β pleated sheet. The present work is a complete study of normal modes and their dispersion in the unusual left-handed α form. A special feature of some of the dispersion curves is their tendency to bunch in the neighborhood of helix angle. This is attributed to the presence of strong intramolecular interactions. Crossing and repulsion between the dispersion curves is also observed. The N-deuterated analogue of PBLA has been studied to check the validity of assignments and force field (Urey Bradley). Specific heat has been obtained from dispersion curves via density of states. A comparative study of left-handed and right-handed forms is presented. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Chlorination of ribofuranose or 2-deoxyribofuranose derivatives was carried out in a 1,4-dioxane solution of hydrogen chloride. This improved procedure allowed the syntheses of 1-chloro-α-D -ribofuranose and 1-chloro-2-deoxy-α-D -ribofuranose derivatives and offered ease of handling, high yield, and the stereo-controlled α-configuration at C-I.  相似文献   

12.
Recently, a novel enzymatic method was developed for determination of homocysteine. This method utilizes the electrochemical hydrogen sulfide sensor along with methionine α,γ‐lyase to accomplish the fast, accurate, sensitive and selective measurements. As a continuation of this work, another enzyme, homocysteine α,γ‐lyase, was used and the parallel experiments of using both enzymes were carried out against the effect of pH, sensitivity, linearity, and interferences, in an intended comparison between these two enzymes. The excellent linearity of amperometric currents against homocysteine concentrations, high sensitivities and low detection limits for both enzymes reconfirmed that the electrochemical method is superior over other analytical means. The high enzymatic activity of methionine α,γ‐lyase surpassing homocysteine α,γ‐lyase endowed the former higher sensitivity, lower detection limit and faster response than the latter, suggesting methionine α,γ‐lyase a better candidate for homocysteine measurement by electrochemical method. The differences between these two enzymes on the trends of response time and sensitivity at different pH environments, reactivity toward several forms of homocysteine as well as on the interference from several agents were also addressed and discussed.  相似文献   

13.
Microwave irradiation was applied to synthesize poly(ε‐caprolactam‐co‐ε‐caprolactone) directly from the anionic catalyzed ring opening of two cyclic monomers, ε‐caprolactam and ε‐caprolactone using a variable frequency microwave furnace, programmed to a set temperature and controlled by a pulsed power on–off system. Dielectric properties of ε‐caprolactam, ε‐caprolactone, and their mixture were measured in the microwave range from 0.4 to 3 GHz, showing that both ε‐caprolactam and ε‐caprolactone exhibited effective absorption of microwave energy to induce a fast chemical reaction. The microwave induced anionic copolymerization of ε‐caprolactam and ε‐caprolactone generated copoly(amide‐ester)s in yields as high as 70%. Conventional thermal and microwave copolymerization studies were also conducted for comparison with the microwave results. These studies demonstrated that an effective and efficient microwave method to copolymerize ε‐caprolactam with ε‐caprolactone in higher yield, higher amide content, and higher Tg 's, relative to the thermal process, has been developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1379–1390, 2000  相似文献   

14.
A series of tri‐components copolymers with different molar ratios were synthesized via bulk ring‐opening copolymerization of trimethylene carbonate (TMC), L ‐lactide (LLA), and ε‐caprolactone (ε‐CL), using stannous octoate as catalyst. The sequence structure of the tercopolymer chain was characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The results showed that although block sequence of the corresponding monomers still existed in the tercopolymer chain, the random tercopolymers were ultimately obtained due to the transesterification during polymerization. For the samples TP1 and TP2, longer sequence of LLA existed in the molecular chains. The thermal properties of tercopolymers were investigated by differential scanning calorimetry (DSC) and the mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the properties of these copolymers could be adjusted by changing the compositions of the copolymers. The resulting tercopolymers are expected to have potential uses as nerve regeneration and other biomedicine materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

16.
Form‐stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)‐ and ε‐caprolactone (CL)‐based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and rubbery with elastic moduli ranging from 1.8 ± 0.3 to 5.2 ± 0.4 MPa and permanent set values as low as 0.9% strain. The elastic moduli of the semicrystalline networks are higher and range from 61 ± 3 to 484 ± 34 MPa. The erosion behavior of (co)polymer networks is investigated in vitro using macrophage cultures, and in vivo by subcutaneous implantation in rats. In macrophage cultures, as well as upon implantation, a surface erosion process is observed for the amorphous (co)polymer networks, while an abrupt decrease in the rate and a change in the nature of the erosion process are observed with increasing crystallinity. These resorbable and form‐stable networks with tuneable properties may find application in a broad range of biomedical applications.

  相似文献   


17.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

18.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


19.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

20.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号