首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

2.
Cationic polymerizations of two series of divinyl ethers were carried out to clarify the effects of their central spacer chain structure on their crosslinking polymerization behavior. One series of the monomers involves divinyl ethers with an oligooxyethylene central spacer chain: diethylene glycol divinyl ether ( O‐3 ), triethylene glycol divinyl ether ( O‐4 ), tetraethylene glycol divinyl ether ( O‐5 ), pentaethylene glycol divinyl ether ( O‐6 ), and heptaethylene glycol divinyl ether ( O‐8 ) (see Scheme 1 ). The other series includes divinyl ethers with an oligomethylene central spacer chain: 1,4‐butanediol divinyl ether ( C‐4 ), 1,6‐hexanediol divinyl ether ( C‐6 ), and 1,8‐octanediol divinyl ether ( C‐8 ). Cationic polymerizations of these monomers were carried out with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in methylene chloride (CH2Cl2) at ?30 °C ([Monomer]0 = 0.15 M; [HCl]0 = 5.0 mM; [ZnCl2]0 = 0.5 mM). The polymerizations of the oligomethylene‐based divinyl ethers C‐6 and C‐8 caused gel formation at high monomer conversions (~90%), whereas C‐4 formed soluble polymers even at almost 100% monomer conversion. The oligooxyethylene‐based divinyl ethers O‐3 , O‐4 , O‐5 , and O‐6 underwent gel‐free polymerizations up to 100% monomer conversion and O‐8 did so at least up to ~80% conversion. The content of unreacted pendant vinyl groups of the obtained soluble polymers was measured by 1H NMR spectroscopy. In the polymerizations of the oligomethylene‐based divinyl ethers ( C‐4 , C‐6 , and C‐8 ), the vinyl contents of the polymers decreased monotonously with increasing monomer conversion, and their number‐average molecular weights (Mn's) and polydispersity ratios (Mw/Mn's) increased considerably just before the gelation occurred. On the contrary, the vinyl contents of the polymers obtained from the oligooxyethylene‐based divinyl ethers ( O‐3 , O‐4 , O‐5 , O‐6 , and O‐8 ) decreased steeply even in the early stage of the polymerizations and almost all the pendant vinyl ether groups were consumed in the soluble polymers at the final stage of the polymerizations. The oligooxyethylene spacer units adjacent to the pendant unreacted vinyl ether groups may solvate intramolecularly with the carbocationic active center to accelerate frequent occurrence of intramolecular crosslinking reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3729–3738, 2004  相似文献   

3.
The molecular structure of the phase—stable at room temperature—for the polymer with formula [ p C6H4 COO p C6H3(R) p C6H3(R) OOC p C6H4 O (CH2)10O ]x, with R =  CH2 CHCH2, is reported. The cell is hexagonal (a = b = 13.43 Å, c = 33.3 Å, γ = 120°), space group P63, six chains per unit cell (dcalcd = 1.23 g cm−3). The six chains are packed together to give a bundle with the center of mass set at the origin of the unit cell. The allyl groups are placed inside the bundle, thus explaining the unexpected reactivity of the double bonds to give crosslinking when fiber samples are annealed in the solid state. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1601–1607, 1999  相似文献   

4.
The addition of dialkyl (R = Me or Et) carbonates to poly(oxyethylene)-based solid polymeric electrolytes resulted in enhanced ionic conductivities. Relatively high conductivities in lithium batteries with solutions of lithium salts in di(oligooxyethylene) carbonates such as R( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR (R = Et, n = 1, 2, or 3, m = 0, 1, 2, or 3) and related carbonates were obtained. In this respect, related comb-shaped poly(oligooxyethylene carbonate) vinyl ethers of the type  CH2CH(OR) were prepared [R = ( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR′; (1) n = 2 or 3, m = 0, R′ = Et; (2) n = 2 or 3; m = 3, R′ = Me]. The direct preparation of derived target polymers of this class by polymerization of the corresponding vinyl ether-type monomers could not be achieved because of a rapid in situ decarboxylative decomposition of these monomers (as formed) during the final step of their synthesis. Instead, a prepolymer was prepared by a living cationic polymerization of CH2CH (OCH2CH2 )n O C(O) CH3 (n = 2 or 3). The hydrolysis of its pendant ester groups, followed by the reaction of the hydrolyzed prepolymer with each of several alkyl chloroformates of the type Cl C(O) O( CH2CH2O )mR′ (m = 0, 2, or 3, R′ = Me or Et) resulted in the corresponding target polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2171–2183, 2002  相似文献   

5.
Hydroxy-terminated telechelic poly(2-chloroethyl vinyl ether) (poly(CEVE)) was synthesized by water-based end-capping reaction of living poly(CEVE) with the initiating system CH3CHCl OCH2CH2 OCOCH3/ZnCl2 in CH2Cl2 at −40°C and subsequent end-group transformation of the acetate (α-end) and aldehyde (ω-end) groups into hydroxy groups. The obtained polymers possess controlled molecular weights and narrow molecular weight distributions.  相似文献   

6.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

7.
The cationic polymerization of two new divinyl ethers, 1‐(2‐vinyloxyethoxy)‐2‐[(2‐vinyloxyethoxy)carbonyl]benzene ( 2 ) and 1,2‐bis[(2‐vinyloxyethoxy)carbonyl]benzene ( 3 ), as well as 1,2‐bis(2‐vinyloxyethoxy)benzene ( 1 ), with BF3OEt2 in CH2Cl2 at 0 °C at low initial monomer concentrations ([M]0 = 0.15 and 0.075 M) gave soluble polymers with relatively high molecular weights and broad molecular weight distributions (MWDs), whereas reactions with the HCl/ZnCl2 initiating system yielded soluble polymers with relatively narrow MWDs (weight‐average molecular weight/number‐average molecular weight ? 1.6) under similar reaction conditions. An NMR structural analysis of the HCl/ZnCl2‐mediated polymers from the divinyl ethers showed that poly( 1 ) had virtually no unreacted vinyl ether groups throughout the polymerization (monomer conversion = 28–98%), whereas poly( 2 ) and poly( 3 ) possessed some amount of unreacted vinyl ether groups in the initial stage of the polymerization; the content of the vinyl groups of poly( 2 ) was 18 mol % at a 15% monomer conversion, and the content of the vinyl groups of poly( 3 ) was 31 mol % at an 18% monomer conversion. Therefore, divinyl ether 1 underwent cyclopolymerization exclusively to give almost completely cyclized polymers [degree of cyclization (DC) ~ 100%], whereas divinyl ethers 2 and 3 exhibited a lower cyclopolymerization tendency [DC for poly( 2 ) = 82%; DC for poly( 3 ) = 69%]. The differences in the cyclopolymerization tendencies among the divinyl ethers can be explained by the differences in the solvation powers of the neighboring functional groups adjacent to the vinyl ether moiety with the active center: the ether oxygen of the ether neighboring group solvates intramolecularly with the active center to accelerate the intramolecular propagation, but such an interaction is less effective with the more electron‐deficient oxygen attached to the carbonyl group of the ester neighboring group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 281–292, 2003  相似文献   

8.
RuH2(PPh3)4 catalyzed Tishchenko type polyaddition of terephthal-aldehyde gives aromatic polyester ( 1 ), which contains three structural units, [OCH2 C6H4 CH2O] ( 1a ), [OCH2 C6H4 CO] ( 1b ), and [CO C6H4 CO] ( 1c ). 1H-NMR spectrum shows the presence of the three units in a 1 : 2 : 1 ratio. Isophthalaldehyde also undergoes similar polyaddition to give another aromatic polyester ( 2 ), while 1,12-dodecanedial gives an aliphatic polyester ( 3 ) containing the following structural units: [OCH2 (CH2)10 CH2O] ( 3a ), [OCH2 (CH2)10 CO] ( 3b ), and [CO (CH2)10 CO] ( 3c ). The above polymers have Mn of 2.7 × 103−5.4 × 103 and Mw of 4.3 × 103 − 9.7 × 103, respectively. Mixtures of terephthalaldehyde and 1,12-dodecanedial produce copolymers, which contain the units 1a–1c and 3a–3c in a random sequence. In the copolymerization, terephthalaldehyde shows a strong tendency to give 1c units, whereas 1,12-dodecanedial predominantly affords 3a units. SmI2 also catalyzes polyaddition of terephthalaldehyde to give the corresponding polyester with Mn of 1.7 × 103 and Mw of 3.7 × 103, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1265–1273, 1997  相似文献   

9.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

10.
Methoxydimethylsilane and chlorodimethylsilane‐terminated telechelic polyoctenomer oligomers (POCT) have been prepared by acyclic diene metathesis (ADMET) chemistry using Grubbs' ruthenium Ru(Cl2)(CHPh)(PCy3)2 [Ru] or Schrock's molybdenum Mo(CH CMe2Ph)(N 2,6 C6H3i Pr2)(OCMe(CF3)2)2 [Mo] catalysts. These macromolecules have been characterized by FTIR, 1H‐, 13C‐, and 29Si‐NMR spectroscopy. The molecular weight distributions of these polymers have been determined by GPC and vapor pressure osmometry (VPO). The number‐average molecular weight (Mn) values of the telechelomers are dictated by the initial ratio of the monomer to the chain limiter. The termini of these oligomers (Mn = 2000) can undergo a condensation reaction with hydroxy‐terminated poly(dimethylsiloxane) (PDMS) macromonomer (Mn = 3300) [HO Si(CH3)2 O { Si(CH3)2O }x  Si(CH3)3], producing an ABA‐type block copolymer, as follows: (CH3)3SiO [ Si(CH3)2O ]x [ CHCH (CH2)6 ]y [ OSi(CH3)2 ]x OSi(CH3)3. The block copolymers were characterized by 1H‐ and 13C‐NMR spectroscopy, VPO, and GPC, as well as elemental analysis, and were determined by VPO to have a Mn of 8600. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 849–856, 1999  相似文献   

11.
A study of gas transport properties of novel polynorbornenes with increasing length of an aliphatic pendant group R (CH3 , CH3(CH2)3 , CH3(CH2)5 , CH3(CH2)9 ) has been performed. These polymers were synthesized using novel organometallic complex catalysts via an addition polymerization route. This reaction route maintained the bridged norbornene ring structure in the final polymer backbone. Gas permeability and glass transition temperature were found to be higher than those for polynorbornenes prepared by ring-opening metathesis and reported in the literature. It was shown that for noncondensable gases such as H2 and He the selectivity over N2 decreased when the length of the pendant group increased, but remained relatively stable for the more condensable gases (O2 and CO2). The permeability coefficient is correlated well to the inverse of the fractional free volume of the polymers. The more condensable gases showed a deviation from this correlation for the longest pendant group, probably due to an increase of the solubility effect. This polymer series demonstrated a simultaneous increase in permeability and selectivity, uncommon for polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 797–803, 1998  相似文献   

12.
Cationic cyclopolymerization of 2‐methyl‐5,5‐bis(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a divinyl ether with a cyclic acetal group, was investigated with the HCl/ZnCl2 initiating system in toluene and methylene chloride at ?30 °C. The reaction proceeded quantitatively to give gel‐free, soluble polymers in organic solvents. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion, and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture, indicating that the polymerization proceeded in living/controlled manner. The contents of the unreacted vinyl groups in the produced soluble polymers were less than ~3 mol %, and therefore, the degree of cyclization was determined to be ~97%. In contrast, the pendant cyclic acetal groups remained intact in the polymers under the present cationic polymerization conditions. These facts show that cyclopolymerization of 1 almost exclusively occurred and the poly(vinyl ether)s with the cyclized repeating units and cyclic pendant acetal rings were obtained. Glass transition temperature (Tg) and thermal decomposition temperature (Td) of poly( 1 ) (Mn = 7870, Mw/Mn = 1.57) were found to be 166 and 338 °C, respectively, indicating that poly( 1 ) had high Tg and high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 952–958, 2010  相似文献   

13.
The cationic polymerization of 2‐[4‐(methoxycarbonyl)phenoxy] ethyl vinyl ether, a vinyl ether with a benzoate pendant, was carried out with an HCl/ZnCl2 initiating system in methylene chloride at −15 °C. The polymerization proceeded with living/long‐lived propagating species to produce polymers with controlled molecular weights and relatively narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ ∼1.4), despite the formation of a small amount of oligomeric products during the polymerization. The structural analysis showed that the lowest molecular weight oligomer had the structure CH3CH(OCH2CH2OC6H4COOCH3)OCH2CH2OC6H4COOCH3. The oligomer was formed by the reaction of the monomeric propagating species with the alcohol produced by the side reaction of the active species with water as an impurity during the early stage of polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4362–4372, 2000  相似文献   

14.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit several features which differentiate them from polymerization reactions of α-olefins: a relatively low ethylene reactivity, higher polymerization rates in the presence of α-olefins, a high reaction order with respect to ethylene concentration, and strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions (see ref. 1 ) provided the basis for a new reaction scheme which explains all these features by postulating the equilibrium formation of a Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts that the β-agostically stabilized Ti C2H5 groups can decompose in the β-hydride elimination reaction with expulsion of ethylene and the formation of a Ti H bond even in the absence of hydrogen in the reaction medium. If D2 is used as a chain transfer agent instead of H2, the mechanism predicts the formation of deuterated ethylene molecules, which copolymerize with protioethylene. To prove this prediction, several ethylene homopolymerization reactions were carried out with a supported Ziegler–Natta titanium-based catalyst in the presence of large amounts of D2. Analysis of gaseous reaction products and polymers confirmed the formation of several types of deuterated ethylene molecules and protio/deuterioethylene copolymers, respectively. In contrast, a metallocene catalyst, Cp2ZrCl2 MAO, does not exhibit these kinetic features. In the presence of deuterium, it produces only DCH2 CH2 (CH2 CH2)x CH2 CH2D molecules. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4273–4280, 1999  相似文献   

15.
To clarify the effects of the central spacer chain structure of divinyl ethers on their cationic cyclopolymerization tendencies, 1,4‐bis[(2‐vinyloxy)ethoxy]benzene ( 1 ), 1,4‐bis[(2‐vinyloxy)ethoxy]butane ( 2 ), 1,6‐bis[(2‐vinyloxy)ethoxy]hexane ( 3 ), 1,8‐bis[(2‐vinyloxy)ethoxy]octane ( 4 ), and 1,4‐bis[(4‐vinyloxy)butoxy]butane ( 5 ) were polymerized with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in methylene chloride (CH2Cl2) at 0 °C at low initial monomer concentration ([M]0 = 0.15 M). The polymerizations of divinyl ethers 2 and 3 gave soluble polymers quantitatively. In contrast, the polymerizations of divinyl ethers 1 , 4 , and 5 underwent gel formation at high monomer conversion. The content of the unreacted vinyl groups of the obtained soluble polymers was measured by 1H NMR spectroscopy. Judging from the relatively low vinyl contents of the polymers produced even in the early stage of the polymerization (monomer conversion < ~20%), the cyclopolymerization occurred to some extent for 2 , 3 , and 4 . On the contrary, the polymers produced from 1 and 5 exhibited the relatively high vinyl content, indicating that the cyclopolymerization tendencies of 1 and 5 were lower than those of 2 , 3 , and 4 . These results are discussed in terms of the structural variety of the spacer chains: (1) the presence of benzene ring ( 1 vs 2 ), (2) their length ( 2 vs 3 and 4 ), and (3) the position of ether oxygen ( 4 vs 5 ). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4002–4012, 2002  相似文献   

16.
A new polymer (polyalcohol) was synthesized by hydrogenation of an ethylene carbon monoxide (CO) copolymer produced by a radical method with a catalyst and H2. The Ru/α-alumina catalyst systems showed an excellent activity for hydrogenation of the radical copolymer of CH2CH2 and CO. Films prepared by melting and pressing the synthesized polyalcohol had a high gas barrier property and high tensile modulus. This new polymer has hydroxymethylenic units [ CH(OH) ] and ethylenic units [ CH2CH2 ] in its molecular structure. The new functional polymer poly(hydroxymethylene-co-ethylene),  [ CH(OH) ]n[ CH2CH2 ]m , is amorphous and has excellent and important properties as a high oxygen gas barrier film for wrapping and storage. This may be attributed to the new structure of poly(hydroxymethylene-co-ethylene) (PHME as an IUPAC name), or ethylene methine alcohol copolymer (EMOH as a generic name), compared to the other ethylene vinyl alcohol copolymer (EVOH as a generic name),  [ CH2CH2 ]m [ CH2CH(OH) ]n , which is used as one of the highest gas barrier polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 889–900, 1998  相似文献   

17.
Telechelic ( 8 ) and end-functionalized four-arm star polymers ( 9 ) were synthesized through the coupling reactions of end-functionalized living poly(isobutyl vinyl ether) ( 5; DP n ~ 10) with the bi-and tetrafunctional silyl enol ethers, H4-nC? [CH2OC6H4C(OSiMe3) = CH2]n ( 3: n = 2; 4: n = 4). The precursor polymers 5 were prepared by living cationic polymerization with functionalized initiators, CH3CH(Cl)OCH2CH2X(6), in conjunction with zinc chloride in methylene chloride at ?15°C. The initiators 6 were obtained by the addition of hydrogen chloride gas to vinyl ethers bearing pendant functional groups X , including acetoxy [? OC(O)CH3], styryl (? OCH2C6H4-p-CH = CH2), and methacryloyl [? OC(O)C(CH3) = CH2]. The coupling reactions with 3 and 4 in methylene chloride at ?15°C for 24 h afforded the end-functionalized multiarmed polymers ( 8 and 9 ) in high yield (>91%), where those with styryl or methacryloyl groups are new multifunctional macromonomers. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Highly water soluble [60]fullerene (C60) end‐capped vinyl ether (VE) oligomers with well‐defined structure were synthesized by living cationic polymerization technique. The addition reaction between 1‐octynylfulleride anion and oligomeric cationic species of VEs with pendant acetoxyl or malonic ester functions afforded the precursor C60 end‐capped oligomers. The living VE oligomers were prepared by living cationic polymerization of diethyl 2‐(vinyloxy)ethylmalonate (VOEM) and 2‐acetoxyethyl vinyl ether (AcOVE) by the CH3CH(OR)Cl/ZnI2 [R = CH2CH2OCOCH3 and CH2CH2CH(COOEt)2, respectively] initiating system. The precursors were obtained as dark brown gummy solid in 33 and 72% yield for AcOVE and VOEM, respectively. UV‐vis and 13C NMR spectroscopy indicated the formation of 1,2‐disubstituted dihydrofullerene derivatives. Hydrolysis of the precursors proceeded quantitatively to give the water‐soluble C60 end‐capped oligomers having oligo(sodium 2‐vinyloxyethylmalonate) [oligo(VOEMNa)] and oligo(2‐hydroxyethyl vinyl ether) [oligo(HOVE)] moieties. Solubility measurements revealed the water‐soluble C60 end‐capped oligomer with oligo(VOEMNa) chain to have the excellent aqueous solubility compared to that of the water‐soluble C60 derivatives thus far known; the maximum solubility in water is 96.6 mg/mL, which corresponds to 25.9 mg/mL of the C60 moiety. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3578–3585, 2000  相似文献   

19.
Effects of steric crowding of the substituent of carboxylate counteranions on living cationic polymerization of isobutyl vinyl ether (IBVE) were investigated with the use of two series of carboxylic acids with various carbonyl substituents [RCOOH; R = (aliphatic series) CH3CH2, (CH3)2CH, (CH3)3C; (aromatic series) C6H5CH2, (C6H5)2CH, (C6H5)3C] in conjunction with tin tetrabromide (SnBr4) and 1,4-dioxane (DO) in toluene at 0°C. The overall polymerization rate increased with increasing the bulkiness of the substituents R in both the series: R = CH3 (1) ≃ CH3CH2 (1) < (CH3)2CH (1.76) < (CH3)3C (2.31); C6H5CH2 (0.84) < (C6H5)2CH (0.98) < (C6H5)3C (1.74); the values in the parentheses show the relative polymerization rate. In all the polymerizations, the number-average molecular weight (Mn) of the polymers was directly proportional to monomer conversion and in good agreement with the calculated values, assuming that one RCOOH molecule forms one polymer chain. The living nature of these polymerizations was further confirmed by a linear increase in Mn of the polymers upon sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixtures. In the polymerizations with sterically less hindered carboxylic acids [R = CH3CH2, (CH3)2CH, C6H5CH2, (C6H5)2CH], the molecular weight distribution (MWD) of the polymers was very narrow (Mw/Mn < 1.1) throughout the polymerizations. In contrast, with bulkier substituent-containing counterparts [R = (CH3)3C, (C6H5)3C], the polymerizations led to the polymers of relatively broad MWD (Mw/Mn ≅ 1.5 at ca. 100% monomer conversion). The bulky substituents such as (CH3)3C and (C6H5)3C may decrease the interconversion rate between a dormant and an active species and increase the time-average concentration of the active growing species. The stereoregularity of the obtained polymers was not changed much with the steric environment of the counteranion (meso: 66–69%). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2923–2932, 1999  相似文献   

20.
Summary: The laser irradiation at 193 nm of a gaseous mixture of carbon disulfide and ethene induces the copolymerization of both compounds and affords the chemical vapour deposition of a C/S/H polymer, the composition of which indicates the reaction between two to three CS2 molecules and one C2H4 molecule. Polymer structure is interpreted on the basis of X‐ray photoelectron and FT‐IR spectra as consisting of >CS, >CC<,  CH2 CH2 , (CC)SnC4 − n,  C (CS) S ,  S (CS) S , and C S S C configurations. The gas‐phase copolymerization of carbon disulfide and ethene represents the first example of such a reaction between carbon disulfide and a common monomer.

Scheme showing the expected reaction of excited CS2 molecules with other CS2 molecules to form dimers, which then react with another CS2 molecule or add to ethene.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号