首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ω-Haloalkyltin trihalides, X(CH2)nSnX3 (n ≧ 3; X = halogen) can readily be prepared in high yields by the direct reaction of stannous halides with α,ω-dihaloalkanes, catalysed by trialkylantimony compounds. The compounds are versatile starting materials for the synthesis of a variety of ω-functionallysubstituted organotin compounds R3-mXmSn(CH2)n Y (R = alkyl, phenyl; m = 0-3; X = Cl, Br, O; Y = Br, NMe2, NEt2, COOH, CHOHR, R3Sn). 1H-NMR spectral data for a series of such compounds are presented. The trends observed in the chemical shifts and the 119Sn—methyl proton coupling constants of Me3-m BrmSn(CH2)nBr (m = 0-3; n = 3-5) are discussed in terms of inductive effects. Intramolecular coordination between the ω-bromine atom and tin could not be demonstrated.  相似文献   

2.
The 13C chemical shifts and 13C−119Sn, 117Sn coupling constants for several organotin(IV) compounds RxSnCl4−x (R = Me, Bun, Ph; x = 1−4) have been measured in both inert (CDCl3) and donor (DMSO-d6) solvents, as have 13C data for the compounds RxSnR′4−x (R = Me, Ph; R′ = Bun and R = Me; R′ = Ph; x = 1−3) and the compounds Me3SnX (X = pseudo halide). The δ and 1J(C-Sn) values appear to depend mainly on the type and number of substituents on tin and the donor ability of the solvent. There are linear relationships between the number of substituents (x) and both δ and 1J(C-119Sn) for almost the RxSnX4−x series (R = Me, Bun, Ph; X = Cl and R = Me, Bun; X = Ph; x = 1−4), when measured in a single solvent, e.g. CDCl3. There is an excellent linear relationship between 1J(C-119Sn) and 2J(1HC-119Sn) for the compounds MexSnCl4−x. Determination of 13C data for Me3SnCl and Ph3SnCl in a range of solvents reveals that the value of 1J(C-Sn) increases with the donor ability of the solvent.The marked increase in the values of 1J(C-119Sn) in DMSO-d6 for the compounds RxSnCl4−x(R = Me, Bun,Ph) on going progressively from x = 4 to x = suggest tin coordination numbers of 4, 5, 6 and 6, respectively. Some additional physical data are presented for the isolated complexes from DMSO and the compounds PhxSnCl4−x(x = 1−3) and Me3SnX with X = N3 or OCOMe.  相似文献   

3.
Functionally substituted triorganotin halides V–IX of type R2Sn(X)(CH2)2P(O)PhR′ (R = Me, t-Bu; Rt? = OEt, t-Bu; X = Cl, Br) have been synthesized by halogen cleavage of the corresponding tetraorganotin compounds R2R2Sn(CH2)2P(O)PhR′ (R2 = Me or Ph), I–IV. The solid state structure of Me2Sn (Br) (CH2)2P(O)PhBu-t (IX), determined by X-ray diffraction, shows a distorted trigonal-bipyramidal structure at the tin atom, with intramolecular coordination of the PO group. Spectroscopic data are in agreement with such a structure in solution for compounds V–IX. Upon varying the temperature, concentration or solvent in solutions of compounds V–IX a stereoisomerization is observed. On the basis of NMR 1H, 13C, 31P, 119Sn), IR and conductivity studies, it is suggested that this stereoisomerization involves a hexacoordinated transition state at the tin atom.  相似文献   

4.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

5.
The synthesis of new functionalized organotin‐chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R1, 2Sn)3S4Cl] ( 1 , 2 ), [((R2Sn)2SnS4)2(μ‐S)2] ( 3 ), [(R1, 2Sn)3Se4][SnCl3] ( 4, 5 ), and [Li(thf)n][(R3Sn)(HR3Sn)2Se4Cl] ( 6 ), in which R1=CMe2CH2C(O)Me, R2=CMe2CH2C(NNH2)Me, and R3=CH2CH2COO, are based on defect heterocubane scaffolds, as shown by X‐ray diffraction, 119Sn NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4 , 5 , and 6 constitute the first examples of defect heterocubane‐type metal‐chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R1SnCl2)2(μ‐S)] ( 7 ) and [(R1SnCl)2(μ‐S)2] ( 8 ), which were isolated and helped to understand the stepwise formation of compounds 1 – 6 .  相似文献   

6.
Chemical shift and scalar coupling constant information has been obtained from the 1H, 13C, 29Si and 119Sn NMR spectra of a series of compounds (CH3)3SnCH2M(CH3)3, where M = Sn, Ge, Si or C and with one or two CH3? (Sn) groups replaced by Cl, Br or I. The (CH3)3M and (CH3)3MCH2 groups appear to have opposite substituent effects on chemical shifts.  相似文献   

7.
Twenty-six derivatives of tris[(phenyldimethylsilyl)methylene]tin carboxylates have been prepared. All compounds are new and characterized through elemental analysis IR spectra, and 1H, 13C, 110Sn NMR spectral studies. The spectral results showed that all compounds are four coordinated organotin compounds. The Δv (=υ?υ) of them are over 300 cm?1. The chemical shifts (δ) of 119Sn of ArCO2Sn(CH2SiMe2Ph)3 and ArOCH2CO2Sn(CH2SiMe2Ph)3 give good straight-line correlation with para-substituent constants. These compounds have good acaricide activity, but their action on the mite are slower than that of Torque.  相似文献   

8.
尹汉东  薛绳才  王其宝 《中国化学》2004,22(10):1187-1191
Introduction Dimeric tetraorganodistannoxanes are a kind of in-teresting organotin oxo clusters and have attracted con-siderable attention during the last several decades, in view of their unique structural features1-5 as well as their applications as biocides6,7 and in homogenous cataly-sis.8,9 In the solid state, they contain characteristic Sn4O2X2Y2 structural motifts with staircase or ladder arrangements, a planar four-membered Sn2O2 ring and, generally, penta-coordination around the tin…  相似文献   

9.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

The synthesis of octahedral complexes [SnCl4L2] (L = R2NP(O)(OCH2CF3)(O-p-tolyl): R2N = Me2N (1), Et2N (2), CH2(CH2CH2)2N (3), and O(CH2CH2)2N (4), or L = R2NP(O)(OCH2CF3)(O-p-PhNO2): R2N = Me2N (5), Et2N (6), and O(CH2CH2)2N (7) is described. The new adducts have been characterized by multinuclear (31P, 19F, 119Sn) NMR, IR spectroscopy, and elemental analyses. The solution NMR data show the presence of a mixture of cis and trans isomers. The structure of the complexes in solution was further confirmed by 119Sn NMR spectra, which display a triplet for each isomer, indicating an octahedrally coordinated tin center. The effects of the nature of R and Ar substituents on the donor ability of the P=O group in the ligands R2NP(O)(OCH2CF3)(OAr) were investigated on the basis of 119Sn NMR chemical shifts and used to classify these ligands according to their Lewis basicity.  相似文献   

11.
Some organotin(IV) triazolates of general formula RnSn(L)4 − n (where R = Me, n-Bu and Ph for n = 2; R = Me, n-Pr and n-Bu for n = 3 and HL = 3-amino-5-mercapto-1,2,4-triazole) have been synthesized by the reaction of R2SnCl2/R3SnCl with NaL in 1:2/1:1 molar ratio. Whereas, Oct2SnL2 has been synthesized azeotropically by the reaction of Oct2SnO and HL in 1:2 molar ratio. As good single crystals were not obtained, a large number of experimental techniques, viz. UV/Vis, IR, far-IR, multinuclear (1H, 13C and 119Sn) NMR and 119Sn Mössbauer spectroscopic studies, were used to accomplish a definitive characterization and determination of their most probable structures. In these compounds triazole acts as a monoanionic bidentate ligand, coordinating through Sexo and N(4). The IR and 119Sn Mössbauer spectroscopic studies allow us to deduce a highly distorted cis-trigonal-bipyramidal structure for R3SnL and a distorted skew trapezoidal-bipyramidal structure for R2SnL2, in the solid state. However, 1H, 13C and 119Sn NMR spectral studies revealed that weak bonding between tin and N(4) is further weakened in the solution leading to pseudo-tetrahedral/tetrahedral structure.  相似文献   

12.
The compound I(t-Bu2Sn)4I has been synthesized by controlled cleavage of the related cyclotetrastannane (t-Bu2Sn)4 with iodine in toluene. Both compounds have been investigated by mass, NMR and vibrational spectra. I(t-Bu2Sn)4I: δ(119Snterminal) 67.7, δ(Sncentral) 17.4 ppm; 1J(SnSn) 2199 (terminal-central) and 1575 (central-central), 2J(SnSn) 20 (terminal-central), 3J (SnSn) 307 Hz (terminal-terminal); ν(SnSn) 119, ν(SnI) 167 cm?1. (t-Bu2Sn)4: δ(Sn) 87.4 ppm; ν(SnSn) 125 cm?1. The crystal structure of I(t-Bu2Sn)4I has been determined (R = 0.071): bond lengths SnSn 289.5(1) (terminal-central) and 292.4(1) (central-central), SnI 275.3(1) pm. The conformation of the chain ISn4I is all trans.  相似文献   

13.
14.
Twenty new compounds of the form Ph3GeCHArCH2COOSnR3 (R = n-Bu, cyclohexyl; Ar = substituted phenyl) have been synthesized. Their structures were characterized by IR and 119Sn and 1H NMR spectroscopy. The compounds are five-coordinated carboxylate bridged polymers when R = n– Bu; when R = cyclohexyl (Cy) they are four-coordinate. 119Sn NMR measurements of chemical shift for the two series of compounds have shown that there is a good linear relationship for the chemical shift of 119Sn NMR between the tributyltin and tricyclohexyltin propionates, viz. δ119Sn(Bu3Sn) = 1.0474 δ 119Sn(Cy3Sn) + 95.8076, n = 5, r = 0.993. The structure of one compound was determined by X-ray diffraction. It exists as a monomeric four-coordinated species in a distorted tetrahedronal geometry.  相似文献   

15.
Tetraorganotin(IV) compounds containing the [3-(2-pyridyl)-2-thienyl] group (L), of formula R3SnL (1: R = p-tolyl; 2: R = Ph; 3: R = p-ClC6H4; 4: R = cyclo-C5H9; 5; R = cyclo-C6H11) have been synthesized and their structures examined by 119mSn Mössbauer and NMR (119Sn and 13C modes) spectroscopic techniques, and in the case of compound 1 by X-ray analysis.Compound 1 crystallises in the space group C2/c with a 20.85(1), b 9.521(1), c 26.69(1) Å; β 95.37(3)°; V 5274(3) Å3; Z = 8. Its structure was solved by the heavy-atom method from 4251 observed MO-Kα data and refined to R = 0.068. The coordination environment at tin in the compound is best described as a pseudo-trigonal bipyramid, involving a waek intramolecular SnN bond of distance 2.841(7) Å. This view is supported by the observation of partially-resolved Mössbauer spectra for compounds 1–5 (QS 0.57–0.96 mm s−1) which is not evidenced, on the other hand, for (2-thienyl)SnR3 compounds (7: R = p-tolyl; 8: R = Ph), as well as by similar comparisons of data on 119Sn chemical shifts (−176.3 ppm for 1 relative to −135.5 ppm fr 8) and one-bond coupling constants, 1J(119Sn-13C(1)), where C(1) = ipso-carbon of the aryl group or α-carbon of the cycloalkyl group (647.5 Hz for 1, 726.6 Hz for 2 and 786.2 Hz for 3 relative to 536.9 Hz for 7).  相似文献   

16.
Di‐ and triorganotin(IV) carboxylates, RnSn(OCOC(R2)=CHR1)4–n (n = 2 and 3; R = Me, Et, n‐Bu, Ph; R1 = 3‐CH3O‐4‐OHC6H3, R2 = C6H5) were prepared by reacting the corresponding organotin(IV) chloride with the silver salt of the (E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐phenylpropenoic acid. The title compounds were investigated and characterized by elemental analysis, infrared (FT‐IR), multinuclear (1H, 13C, 119Sn) NMR, and mass spectrometry, and possible structures were proposed. The complexes and ligand acid ( HL ) have been evaluated in vitro against various bacteria and fungi. The results noticed during the biocidal activity screenings proved their in vitro biological potential. They were also tested for cytotoxicity.  相似文献   

17.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

18.
Terminal alkenes of the type H2CC(OR1)X, in which R1 is a tertiary alkyl or a 1-cyclopropylethyl group and X=Ph, OSiMe2But, OEt or H, undergo radical-chain reactions with organic halides R2Hal to give carbonyl compounds R2CH2C(O)X.  相似文献   

19.
The results of the thermolysis of 1:2 adducts of stable group-14 element divalent compounds [R2M:, R2=1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl; 1b, M=Ge; 1c, M=Sn] to TEMPO radical are discussed in detail. Whereas the thermal reactions of the 1:2 adducts [R2M(OR)2, R=2,2,6,6-tetramethylpiperidin-N-yl; 3b, M=Ge; 3c, M=Sn] are understood to proceed by the initial homolysis of an M-O bond to give the corresponding aminoxy-substituted group-14 element radicals [R2(RO)M; 2b, M=Ge; 2c, M=Sn] and TEMPO, the subsequent reactions of 2b and 2c were remarkably different to each other; 2b favors the N-O bond fission (path b) to give the corresponding germanone, while 2c prefers the M-O bond fission (path a) to give stannylene (1c). In combining with our previous results for aminoxysilyl radical (2a) [R2(RO)Si], the origin of the remarkable differences in the reactivity among group-14 element radicals 2a-2c is discussed on the basis of the theoretical calculations for model reactions.Improved syntheses of the precursor dichlorogermane and dichlorostannane of germylene (1b) and stannylene (1c), respectively, are described in Section 3.  相似文献   

20.
(Diphenylphosphanyl)phenols C6H3(1‐OH)(2‐PPh2)(4‐R1)(6‐R2), abbreviated as (POH), oxidatively add to Fe(PMe3)4 affording hydridoiron(II) compounds fac‐FeH(PO)(PMe3)3 ( 1 : R1=R2=H; 2 : R1=Me, R2=H; 3 : R1=OMe, R2=H; 4 : R1=Me, R2=CMe3; 5 : R1=R2=CMe3) with high stereoselectivity. (2‐diphenylphosphanyl)thiophenol (PSH) reacts accordingly forming fac‐FeH(PS)(PMe3)3 ( 9 ). Complete assignment of 1H, 13C, and 31P signals is achieved by 2D heteronuclear shift correlations. 4,6‐Di‐tert‐butyl‐(2‐diphenylphosphanyl)phenol reacts with FeI(Me)(PMe3)4 to form FeI(PO)(PMe3)2 ( 6 ). 4 , 5 and 9 under 1 bar of CO are converted to monocarbonyl derivatives FeH(PX)(CO)(PMe3)2 ( 7 , 8 : X = O; 10 : X = S) which in solution form mixtures of two isomers A and B . 4 and 5 react with their parent phosphanylphenols, respectively, to give diamagnetic complexes Fe(PO)2(PMe3) ( 11 , 12 ) which dissociate trimethylphosphane to give paramagnetic compounds Fe(PO)2. The same phosphanylphenols react with FeCl3 to afford racemic mixtures of complexes Fe(PO)3 ( 13 , 14 ). Structural data were also obtained from single crystals of compounds 1 , 5 , and 11 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号