首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ammonium salts of poly(amide acid)s (PAS) were prepared from various poly(amide acid)s (PAA) with tertiary amines. The solubility of poly(amide acid) ammonium salts prepared from PAA(PMDA/ODA) in water is related to the ion concentration of tertiary amines. In order to elucidate the influence of the chemical structures of poly(amide acid)s and poly(amide acid) ammonium salts on their absorption spectra, pyromellitic dianhydride (PMDA), 3,3′,4,4 ′-biphenyltetracarboxylic dianhydride (BPDA), and 3,3′,4,4 ′-benzophenonetetracarboxylic dianhydride (BTDA) were chosen to react with p-phenylenediamine (PDA) and (4,4′-diaminodicyclohexyl)methane (DCHM) to give three kinds of aromatic PAAs and three kinds of alicyclic PAAs. The corresponding PASs were prepared by the reaction of PAAs with triethanolamine (TEA). Their ultraviolet–visible (UV–vis) absorption spectra were investigated compared to those of model compounds. A transparent film without absorption above 320 nm was obtained for PAS(PMDA/DCHM). The difference in absorption spectra of PAS(PMDA/PDA) from that of PAS(PMDA/DCHM) can be related to the existence of intra- and intermolecular charge transfer (CT) for PAS(PMDA/PDA). The absorption spectra of PASs with PDA in films are red shifted compared to those of corresponding PAAs in films, while the absorption spectra of PASs in water are blue shifted compared to those of corresponding PAAs in DMF. No differences in the absorption spectra of PAAs and PASs were found in DMF/H2O (9/1) mixed solvent. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1329–1340, 1998  相似文献   

2.
Perylenetetracarboxydiimide (PEDI) molecularly dispersed in polyamic acid (PAA) and polyimide (PI) films has unique fluorescence properties. An originally strong fluorescence of PEDI is efficiently quenched in the PAA films. The systematic variation of the chain structure of the PAA matrices revealed that the aromatic amide groups in the PAA chains function as a quencher. When a PAA derived from 3,4,3′4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA), BPDA/PDA, was used as a matrix polymer, the fluorescence of the dye dispersed in the film increased abruptly as imidization of the matrix proceeds. But annealing at temperatures higher than 320°C in the step-heating process caused a gradual decrease in the fluorescence intensity. The decreased intensity results from the dye–PDA units interactions intensified by the denser molecular packing of the matrix polymer chains. PEDI shows significant dependence of the fluorescence intensity on the chain structure of the PI matrices. In the various PI films containing a fixed diamine component, the dye fluorescence intensity reduces linearly with an increase in the intramolecular charge transfer ability of the PI matrices. From the result, we propose a fluorescence quenching mechanism through multistep electron transfer processes. The BPDA/PDA polyimide matrix leads to a strong PEDI fluorescence whereas the pyromellitic dianhydride (PMDA)-based PI matrices do not. For the blends composed of these PIs, the fluorescence of PEDI bound into the main chains provides a valuable indicator of the miscibility on the molecular level. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 827–840, 1998  相似文献   

3.
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002  相似文献   

4.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

5.
The polyaddition reactions of alicyclic diamines such as 1,4-diaminocyclohexane (1,4-CHDA) or 4,4′-diaminodicyclohexylmethane (DCHM) and configurational isomers of 1,4-CHDA or DCHM with tetracarboxylic aromatic anhydrides in aprotic solvents were carried out to prepare high molecular weight poly(amic acid)s. Through the thermal imidization of poly(amic acid)s, several flexible polyimide films were prepared. Because of the stiffness of the alicyclic moieties in diamines, the resulting polyimides exhibit high glass transition temperatures (220–340°C) almost similar to those for corresponding aromatic polyimides which have phenylene groups in place of cyclohexyl groups, and show good thermal stability. The partial crystallization was observed for polyimides with trans-cyclohexyl moiety during the heating in differential scanning calorimetry and ascertained by wide-angle x-ray diffraction. Thus, the inhibition of the occurrence of charge transfer in polyimides is accomplished by introducing alicyclic diamines in place of aromatic diamines without reducing their thermal stability. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A diamine monomer 4,4′-methylenedianiline(MDA) was introduced to modify the polyimide of pyromellitic dianhydride(PMDA) and 4,4′-oxydianiline(ODA) by polycondensation. A series of polyamic acids was synthesized from MDA and ODA of different molar ratios with PMDA of sum mole of moles of MDA and ODA, and polyimide films were obtained by thermal imidization. Polyimide(PI) films were characterized by tensile testing, dynamic mechanical analysis(DMA), thermal gravimetry analysis(TGA), Fourier transform infrared spectroscopy (FTIR), wide X-ray diffraction(WAXD) and molecular simulation. With the increase of MDA content, the tensile strength and thermal decomposition temperature remained generally stable compared with those of PMDA/ODA polyimide. Unexpectedly, the glass transition temperature(Tg) and Young’s modulus increased from 388.7 ℃ and 2.37 GPa to 408.3 ℃ and 5.74 GPa, respectively. The results of WAXD and molecular simulation indicate the steric hindrance among hydrogen atoms of the linkage groups and adjacent phenyls enhanced the properties of the polyimide modified with MDA.  相似文献   

7.
Summary: A copolycondesation-type poly (amic acid) (PAA) was synthesized using pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) as dianhydride monomers, and 4,4′-oxydianiline (ODA) as a diamine monomer under microwave irradiation in dimethylformamide (DMF). PAA was then converted into a polyimide (PI) by an imidization. The structure and performance of the polymer were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Proton nuclear magnetic resonance (1H NMR) spectrometry, viscosity, X-ray diffraction (XRD), and thermogravimetric (TG) analyses. The results showed that under microwave irradiation, the intrinsic viscosity and the yield of PAA were increases, and the reaction time was shortened. The FT-IR spectra of the polymer revealed characteristic peaks for PI around 1778 and 1723 cm–1. TG curves indicated that the obtained PI began to lose weight at 535 °C, and its 10% thermal decomposition temperature under N2 was 587 °C.  相似文献   

8.
Para-, meta-, and mixed isomeric poly(amic ethyl ester) precursors of the polyimide based on pyromellitic dianhydride (PMDA) and 3,4′-oxydianiline (3,4′-ODA) were synthesized. The intrinsic viscosity of each of the isomers was measured in an NMP solution and found to be less than corresponding isomers derived from PMDA and 4,4′-oxydianiline (4,4′-ODA) precursors with comparable molecular weight. The imidization and solvent retention were measured as a function of imidization temperatures, Ti using forward recoil spectrometry (FRES). For samples cast from a single solvent, either N-methyl pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), no difference was observed in the temperature-dependent imidization behavior between the isomers. In all cases the imide fraction f increased as Ti increased, and reached a value of unity, i.e., full conversion at 400°C. At the same Ti, samples cast from DMSO showed a slightly higher f than samples cast from NMP. FRES and time of flight FRES (TOF-FRES) were used to measure the interdiffusion distance, w, of deuterium-labeled tracers into nondeuterated base layers of the polyimide of PMDA/3,4′-ODA treated at various Ti. The primary determinant of w for all isomers was Ti, and the particular isomer used as either the base or the tracer molecule did not seem to affect w. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2247–2258, 1998  相似文献   

9.
This work presents novel colorless polyimides (PIs) derived from 1R,2S,4S,5R‐cyclohexanetetracarboxylic dianhydride (H″‐PMDA). Isomer effects were also discussed by comparing with PI systems derived from conventional hydrogenated pyromellitic dianhydride, that is, 1S,2R,4S,5R‐cyclohexanetetracarboxylic dianhydride (H‐PMDA). H″‐PMDA was much more reactive with various diamines than H‐PMDA, and the former led to PI precursors with much higher molecular weights. The results can be explained from the quite different steric structures of these isomers. The thermally imidized H″‐PMDA‐based films were colorless regardless of diamines because of inhibited charge‐transfer interaction. In particular, the H″‐PMDA/4,4′‐oxydianiline system simultaneously achieved a very high Tg exceeding 300 °C, high toughness (elongation at break > 70%), and good solution processability. In contrast, the H‐PMDA‐based counterparts were essentially insoluble. The outstanding solubility of the former probably results from disturbed chain stacking by its nonplanar steric structure. An advantage of chemical imidization process is also proposed. In some cases, a copolymerization approach with an aromatic tetracarboxylic dianhydride was effective to improve the thermal expansion property. The results suggest that the H″‐PMDA‐based PI systems can be promising candidates for novel high‐temperature plastic substrate materials in electronic paper displays. A potential application as optical compensation film materials in liquid crystal displays (LCD) is also proposed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Novel co‐polymerization polyimide (PI) fibers based on 4,4′‐oxydianiline (ODA)‐pyromellitic dianhydride (PMDA) were prepared. 2‐(4‐Aminophenyl)‐5‐aminobenzimidazole (PABZ) containing the N? H group was introduced into the structure of the fibers as the proton donor. The results of Fourier transform infrared (FTIR) and dynamic mechanical analysis (DMA) showed that hydrogen bonding occured between the N? H group and chains, which strongly enhanced interchain interaction. This hydrogen bonding interaction increased the tensile strength and initial modulus of the PI fibers up to 2.5 times and 26 times, respectively, compared to those of homo‐PI PMDA‐ODA fibers with no hydrogen‐bonding interaction because of the absence of proton donors after the imidization process. In the mean time, glass transition temperature (Tg) of the modified PI fibers was found to be 410–440°C, which was higher than that of the homo‐PI PMDA‐ODA fibers. From the result, a novel access to molecular design and manufacture of high performance PI fibers with good properties could be provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Photosensitive polyimides with alicyclic diamines and benzophenone moiety were prepared by reactions of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with diamines in aprotic solvents, followed by thermal or chemical imidizations. Among them the polyimide from BTDA and bis(4-amino-3-methylcyclohexyl) methane (DMDHM) can be dissolved in several organic solvents such as dichloromethane, tetrachloroethane, and N-methyl-2-pyrrolidone (NMP). In order to compare properties of the polyimides with alicyclic diamines with those of corresponding aromatic polyimides, the UV absorption spectra and fluorescence spectra of these polyimides and their model compounds were investigated. No occurrence of charge transfer at photoexcited states was ascertained for the polyimides with alicyclic diamines. The hydrogen abstraction and crosslinking during photoirradiation have been studied to learn the influence of the elimination of charge transfer process in these photosensitive polyimides. The quantum yield of hydrogen abstraction for the model compound of alicyclic polyimides is 0.56 in THF measured with HPLC. The quantum yield for the photocrosslinking reaction of the solvent-soluble polyimide with alicyclic diamine, PI(BTDA/DMDHM), was determined to be 0.004 in air from gel permeation chromatography (GPC) measurement, which is four times higher than that for photosensitive polyimides with aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

13.
Preparation of a polyimide nanofoam (PI‐F) for microelectronic applications was carried out using a polyimide precursor synthesized from poly[(amic acid)‐co‐(amic ester)] and grafted with a labile poly(propylene glycol) (PPG) oligomer. Polyimide precursor was synthesized by partial esterification of poly(amic acid) (PAA) derived from pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA). The precursor was then grafted with bromide‐terminated poly(propylene glycol) in the presence of K2CO3 in hexamethylphosphoramide and N‐methylpyrrolidone, imidized at 200°C in nitrogen and the product was subsequently decomposed in air at 300°C to eliminate the labile PPG oligomer to produce PMDA/ODA polyimide nanofoam. Nuclear magnetic resonance spectroscopy (1H‐NMR) and Fourier transform infrared spectroscopy (FT‐IR) techniques were used to characterize the formation of polyimide precursor and extent of grafting of PPG with polyimide. The results of thermogravimetric analysis (TGA) showed three step decomposition of nanofoam with the removal of PPG at 350°C and decomposition of polyimide at around 600°C. The polyimide nanofoams were also characterized by small angle X‐ray scattering (SAXS), field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The morphology showed nanophase‐separated structures with uniformly distributed and non‐interconnected pores of 20–40 nm in size. Dynamic mechanical analysis (DMA) indicated higher storage modulus for the foamed structure compared to the pure PI with reduction in loss tangent for the former system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

15.
采用廉价的三苯基氧膦和混酸合成了一种含磷二胺单体,二(3-氨基苯基)苯基膦氧(DAPPO)。在4,4′-二胺基二苯醚(ODA)、3,3′,4,4′-联苯四酸二酐(BPDA)和均苯四酸二酐(PMDA)聚合体系中引入该单体,制备含磷聚酰亚胺纤维。热失重分析(TGA)结果表明,聚酰亚胺纤维的热稳定性随含磷量的增加而明显提高。当n(DAPPO):n(ODA)为7:93时,纤维的极限氧指数达到了43,说明纤维的阻燃性能显著提高。  相似文献   

16.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

17.
Four polyimides containing hexylene spacer and a fluorostilbene unit in the side chains were prepared in thin‐film form by two‐step condensation of 3,3′‐bis[(4′‐fluoro‐4‐stilbenyl)oxyhexyloxy]‐4,4′‐biphenyldiamine (FS6B) with pyromellitic dianhydride (PMDA), benzophenone‐3,3′,4,4′‐tetracarboxylic dianydride (BTDA), 4,4′‐oxydi(phthalic anhydride) (ODPA), and 4,4′‐hexafluoroisopropylidenedi(phthalic anhydride) (6FDA), respectively, and their controllability of liquid crystal (LC) alignment on rubbed surfaces was investigated. Pretilt angles of LCs were achieved in the 2–9° range, depending on the rubbing density and backbone structures. The effect of the mesogenic stilbene group on the pretilting of LCs was distinctive in FS6B‐PMDA. Contact‐angle measurements on thin films annealed at 120 °C revealed that FS6B‐PMDA potentially had the better alignment stability than FS6B‐6FDA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3622–3632, 2001  相似文献   

18.
In this work, thermal solution imidization kinetics of two high performance polyimides, prepared from the polycondensation of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with 4,4′-bis(3-aminophenoxy)diphenylsulfone (DAPDS) were investigated using nonaqueous titration technique with tetramethylammonium hydroxide. Most of the kinetic investigations, found in the literature, are based on the aromatic p-diamines.1,2 In the present work, attention was focused on imidization kinetics with m-substituted aromatic diamines having electron donating ( O ) and electron withdrawing ( SO2 ) groups in the same molecule. Kinetic parameters, namely the rate constants, activation energies, entropies and enthalpies of imidization reactions were determined and compared with the literature values. It is reported in literature3 that electron affinities of dianhydrides and ionization potentials of diamines, have strong influence on the reaction rate and activation energies of imidization. Activation energy (Ea) values were found to be 66 and 57 kJ/mol for DAPDS/PMDA and DAPDS/BTDA respectively, and order of reaction was found to be second order. Polyimides DAPDS/PMDA and DAPDS/BTDA, subjected to kinetic investigation, showed glass transition temperatures of 267°C and 241°C, both were found to be thermally stable up to 500°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2981–2990, 1997  相似文献   

19.
牵伸倍率对联苯型聚酰亚胺纤维形貌、取向及性能的影响   总被引:1,自引:0,他引:1  
均苯四甲酸二酐(PMDA)和联苯二酐(BPDA)与3,3′-二甲基联苯二胺(OTOL)共聚得到聚酰亚胺(PI)溶液,通过干喷-湿法纺制成纤维.利用扫描电镜(SEM)、广角X射线衍射(WAXD)、纤维力学性能测试仪、动态力学分析仪(DMA)和热失重分析仪(TGA)等表征手段,研究不同牵伸倍率对联苯型聚酰亚胺纤维形貌结构、...  相似文献   

20.
A poly[bis(trialkylammonium) 4,4′-oxydiphenylenepyromellitamate] film not containing residual solvents was prepared first as a polyimide precursor film. The preparative method is composed of three process steps involving (1) polymerization of pyromellitic dianhydride with 4,4′-oxydianiline in a mixed solvent of tetrahydrofuran/methanol, (2) addition of a mixture of methanol/trialkylamine to the resulting poly(4,4′-oxydiphenylenepyromellitamic acid) solution, and (3) casting onto glass plates and drying. The salt formation between the poly(amic acid) and trialkylamines was confirmed first by spectroscopic methods. The dried salt film is thermally cured to produce the polyimide film with a reduced coefficient of thermal expansion (CTE). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2493–2499, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号