首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports that stereospecific polymerization of aromatic acetylenes, e.g., p-methoxyphenylacetylene (pMOPA) and p-ethoxyphenylacetylene (pEOPA)was successfully performed to give polyacetylene selectively bearing cis-transoid forms in high yield when a Rh complex catalyst, [Rh(norbornadiene)Cl]2 was used in the presence of triethylamine as the polymerization solvent together with a detailed characterization of the resulting polymers, before and after compression. Compression of these polymers induced a cis-trans isomerization at room temperature under vacuum even in the solid state. Based on data collected before and after compression it is estimated that the trans conjugated length, (CC)n, produced as a result of the compression is n = 26 for PpMOPA and n = 40 for PpEOPA polymers, respectively. We further found that g values in the ESR spectra of the pristine polymer were shifted to higher magnetic field by compression, indicating that unpaired electrons called solitons are stabilized in the trans conjugation length as mobile electrons, although in the pristine polymers the unpaired electrons are stabilized in the less conjugated chain, showing large g value, suggesting a magnetic interaction between oxygen in the alkoxy group of phenyl moiety and unpaired electrons in the cis form. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 217–223, 1998  相似文献   

2.
The low-temperature polycondensation of trans-azobenzene-4,4′-dicarbonyl chloride with (S)-(−)-1,1′-binaphthyl-2,2′-diamine and/or 1,4-bis(3-aminophenoxy-4′-benzoyl)benzene afforded a new series of poly(aryl ether ketone amide)s with both fixed and photoinducible kinking elements positioned randomly along the main chain. In their lower energy, trans-azobenzene configurations, the orange, film-forming materials were amorphous, highly tractable, and thermally stable under air or nitrogen up to about 420°C. Variants endowed with higher loadings of the bent binaphthyl monomer were soluble in a variety of organic solvent media including THF and acetone. The introduction of cis-azobenzene backbone kinks into these materials was carried out by irradiating the polymer solutions with near-UV light. Up to 70% of the azobenzene moieties in these polymers were capable of assuming the higher energy cis-configuration, thus greatly increasing the number of bent or kinked sites positioned along each polymer backbone. In solution, reverse cistrans isomerization reactions were triggered thermally and were quantitatively tracked by both optical absorbance and 1H NMR spectroscopies. Activation parameters calculated for cistrans reorganization of the polymer backbone were not dependent upon the chemical composition or molecular weight of the polymers but did exhibit a small dependence upon the nature of the solvent medium used to conduct the isomerization experiment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2827–2837, 1998  相似文献   

3.
Highly stereospecific polymerization of a novel sulfur containing aromatic acetylenes, that is, (pn‐octylthiophenyl)acetylene (pOctSPA), was successfully performed using the Rh complex, [Rh(norbornadiene)Cl]2‐TEA, catalyst in the presence of various solvents under mild conditions. The resulting polymers were characterized in detail by 1H NMR, ESR, laser Raman, diffuse reflective UV‐Vis (DRUV‐Vis), and wide angle X‐ray diffraction methods. The data showed that the resulting polymers bear cis‐transoid form, which can induce the cis‐to‐trans isomerization when the cis polymers are subjected to pressure at room temperature under vacuum, breaking rotationally the cis C?C bonds in the main‐chain giving two kinds of π‐radicals, the so‐called cis radical and trans radical as the origin of a polymer magnet like a novel spin glass material. Further, the resulting cis poly(acetylene)s were found to have a helical main‐chain, which is packed in pseudohexagonal crystal called π‐conjugated columnar or nano π‐conjugated columnar as a novel color controllable material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2836–2850, 2005  相似文献   

4.
ESR and cyclic voltammetry investigations show that isomerization of the radical cation of cis-1,1′-azonorbornane (cis- 1 ) to the trans-radical ion proceeds too fast in solution for direct investigation of the cis-radical ion even at ?78°. The facile isomerization of the radical cation is in agreement with PM 3 calculations proposing an activation barrier of only 17 kJ/mol. As a consequence, quantitative cistrans isomerization of 1,1′-azonorbornane can effectively be accomplished by addition of catalytic amounts of one-electron oxidants. This is the first evidence for a radical-cation-catalyzed cistrans isomerization of azo compounds.  相似文献   

5.
Before and after cis-trans isomerization, the observed 13C-NMR chemical shifts of poly(phenylacetylene) (PPA) in the solid state were investigated on the basis of 13C-NMR chemical shift calculations within AM1 for the cis-transoidal and deflected trans-transoidal forms. Two 13C-resonance peaks in the observed CP/MAS 13C-spectrum were assigned theoretically by the 13C chemical shifts of the main and side chains. After thermal isomerization, the 13C peak of the main chain for PPA shifted upfield by 3.5 ppm, in contrast to the downfield shift of the 13C peak for polyacetylene. This upfield shift of trans-PPA largely was attributed to the increases of the excitation energy from the ground state to the lowest φπ–π* state in the paramagnetic terms of 13C chemical shift on the main chain carbons with the increase in deflected angle τ of 0 to 80°. The ±80° deflected conformation of the trans-transoidal chain due to the cis-trans isomerization was confirmed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1657–1664, 1999  相似文献   

6.
Series of high‐cis and cis/trans poly[(fluorophenyl)acetylene]s (PFPhA) have been prepared by polymerization of (2‐fluorophenyl)acetylene, (3‐fluorophenyl)acetylene, and (4‐fluorophenyl)acetylene with catalysts: [Rh(1,5‐cyclooctadiene) OCH3]2 (high‐cis PFPhAs) and tungsten(VI) oxychloride/tetraphenyltin (cis/trans PFPhAs). The molecular weight and configurational stability under various conditions at room temperature were studied for both PFPhAs series by means of size exclusion chromatography, 1H‐NMR, and UV‐vis techniques. All samples exhibited slow degradation when exposed to the atmosphere in the solid state; the rate of degradation was independent on the F‐position on the Ph ring. The rate of degradation increased up to three orders of magnitude in the tetrahydrofuran solution where it was higher for high‐cis polymers compared with their cis/trans counterparts. The degradation of high‐cis PFPhAs was accompanied by significant cis‐to‐trans isomerization in aerated tetrahydrofuran solution. Rate of degradation and isomerization exhibited the same dependence on the F‐position on the Ph ring. The hypothesis was postulated that the degradation of high‐cis PFPhAs in solution was accelerated by cis‐to‐trans isomerization due to which the content of unpaired electrons on the main chains is enhanced. In both high‐cis and cis/trans series of polymers the ortho‐substituted isomers exhibited an enhanced stability compared with meta‐ and para‐substituted isomers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4296–4309, 2010  相似文献   

7.
Cis-transoidal (orange, soluble, and of low crystallinity) and cis-cisoidal (red, insoluble, and highly crystalline) polyphenylacetylenes (PPA) were prepared by Ziegler-Natta catalysts and trans-cisoidal (yellow, soluble, and amorphous) polyphenylacetylenes were prepared by using phosphine complexes, TiCl4 and by thermal initiation. The cis-transoidal and cis-cisoidal structures isomerize thermally in the solid state above 100°C. In solution the cis-transoidal structure isomerizes above 80°C. The polymers obtained by thermal isomerization are soluble, amorphous, and have a trans-cisoidal structure. At temperatures higher than 120°C the cis–trans isomerization is accompanied by cyclization and by scission of the polymer chain. A method was developed for determination of cis content of cis-transoidal and cis-cisoidal polyphenylacetylenes.  相似文献   

8.
Thermal cis-trans isomerization and decomposition of polyacetylene film prepared with a Ti(OC4H9)4–Al(C2H5)3 (Al/Ti = 4) system were investigated under inert gas or in vacuum by means of thermal analysis and infrared spectroscopy. Thermograms of differential thermal analysis of cis-polyacetylene revealed the existence of two exothermic peaks at 145 and 325°C and one endothermic peak at 420°C which were assigned to cis-trans isomerization, hydrogen migration accompanied with crosslinking reaction, and thermal decomposition, respectively. The isomerization was followed by infrared spectroscopy over the temperature range 75–115°C. The reaction did not obey simple kinetics. The apparent activation energy for the cis-trans isomerization was 17.0 kcal/mole for the polymer containing 88% cis configuration and increased with increasing trans content up to 38.8 kcal/mole for 80% trans content.  相似文献   

9.
Polyphenylacetylenes were prepared using ferric acetylacetonate and (i-Bu)2AlH, RhCl[(C6H5)3P]3 and thermal initiation. Color, infrared spectra, softening temperatures, ultraviolet fluorescence, solubility, and crystallinity are described. A method is presented for assigning to these three macromolecular species predominantly cis, trans, and cistrans copolymer structures, respectively. The dominantly cis polymer is believed to form in a transoid conformation which can easily be transformed to a more helical arrangement which exhibits a degree of crystallinity. Pyridine promotes the isomerization of cis to trans structure. The rhodium phosphine is thought to effect chain growth by repeated additions of the acetylenic C? H of monomer across a terminal triple bond. Phenylacetylene thus behaves as a bifunctional molecule in this system. Color, polymer conformation, and crystallinity appear to be strongly interrelated.  相似文献   

10.
Study was made of the cistrans isomerization kinetics of a series of azo compounds in polymethyl methacrylate. It was shown that under ultraviolet irradiation a quantity of cis molecules is formed in the stressed states. The stressed cis molecules' relaxation to equilibrium state takes place at temperatures that are far lower than the glass transition temperature. The influence of the relaxation process on the reverse conversion of cis molecules to the trans molecules was investigated along with the influence of temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1753–1761, 1999  相似文献   

11.
The di-isotacticity of poly(methylpropenyl ether) obtained by the cationic polymerization has been studied by NMR spectra. The NMR spectra of β-methyl protons of the polymer are decoupled from the β-methine proton spectra to determine the di-isotactic fraction in a polymer. The signals of β-methyl protons at 8.78 and 8.89 τ are estimated as spectra based on threo- and erythro-di-isotactic diads, respectively. With BF3·O(C2H5)2 as a catalyst, the trans monomer yields a crystalline polymer and its structure is threo-di-isotactic. Otherwise, cis monomer produces an amorphous polymer, and it is a mixture of threo- and erythro-di-isotactic structure. From these results, it is concluded that the double bond in trans monomer is opened exclusively in the cis type, and in cis monomer cis- and trans-openings take place at almost the same rate.  相似文献   

12.
The homopolymerization of trans-1,4-hexadiene, cis-1,4-hexadiene, and 5-methyl-1,4-hexadiene was investigated with a variety of catalysts. During polymerization, 1,4-hexadienes undergo concurrent isomerization reactions. The nature and extent of isomerization products are influenced by the monomer structure and polymerization conditions. Nuclear magnetic resonance (NMR) and infrared (IR) data show that poly(trans-1,4-hexadiene) and poly(cis-1,4-hexadiene) prepared with a Et3Al/α-TiCl3/hexamethylphosphoric triamide catalyst system consist mainly of 1,2-polymerization units arranged in a regular head-to-tail sequence. A 300-MHz proton NMR spectrum shows that the trans-hexadiene polymer is isotactic; it also may be the case for the cis-hexadiene polymer. These polymers are the first examples of uncrosslinked ozone-resistant rubbers containing pendant unsaturation on alternating carbon atoms of the saturated carbon-carbon backbone. Polymerization of the 1,4-hexadienes was also studied with VOCl3- and β-TiCl3-based catalysts. Microstructures of the resulting polymers are quite complicated due to significant loss of unsaturation, in contrast to those obtained with the α-TiCl3-based catalyst. In agreement with the literature, there was no discernible monomer isomerization with the VOCl3 catalyst system.  相似文献   

13.
The geometric structure of polymethylacetylene (PMA), polypentylacetylene (PPA), and poly(t-butylacetylene) (PTA) was investigated by 1H NMR, 13C NMR, and IR spectroscopies. It was shown that both NMR techniques can be used to determine the trans isomer content of PPA and PTA, whereas the 1H NMR and IR methods can be used for PMA. A calibration curve was constructed by using the 965- and 720-cm?1 bands of the IR spectrum of PPA, and could be used in future work for the same purpose if the samples had molecular weights similar to that of the one used in this study. The isomerization kinetics of PTA was investigated and cis trans activation energies of 88 and 121 kJ/mol were calculated in solution and in the solid state, respectively. Heat treatment of the PMA and PPA samples always leads to a cis trans isomerization with a 100% trans content under extreme conditions. Moreover, a cis trans isomerization of PTA was induced in CCl4, CDCl3, toluene, and benzene, but a trans cis isomerization was induced in decalin. The reversible isomerization of PTA covered a trans isomer concentration ranging form 25 to 60%.  相似文献   

14.
Novel soluble polyacetylenes having a triphenylamine moiety were synthesized by a [Rh(norbornadiene)Cl]2 catalyst under quite mild conditions in fairly high yields. The obtained polymer showed to have trans-transoid sequence as the major main-chain structure which was generated through the so-called cis-to-trans isomerization was already induced even during the polymerization. The HCl doping of the polymer was resulted in the formation of the oxidized polymer where the so-called polaron or bipolaron was produced. In addition, we found that in the case of the pristine polymer unpaired electrons mainly localized on the triphenylamine moiety as the side chain. On the other hand, after the doping the unpaired electron delocalized on the main chain of the polymer.  相似文献   

15.
Highly stereoregular polymerization of 2-ethynyl-3-n-octylthiophene was successfully performed with a [Rh(norbornadiene)Cl]2 catalyst to produce the corresponding polymers in fairly high yields by using triethylamine or a mixture of it with other solvents as the polymerization solvent. We found that the obtained polymer using CHCl3 was a mixture of cis-transoid form, ca. 68% and trans-transoid form, ca. 32% unlike our previous conjecture. Further, we found that the cis-to-trans isomerization can be also induced when the pristine predominant cis polymer was subjected to mechanochemical grinding (MCG) treatment at 77 K using a mortar filled with liquid nitrogen to decrease the cis content from ca. 68% to ca. 7%. The polymers obtained before and after the MCG treatment were characterized in detail using 1H NMR, laser Raman, solution UV-vis, diffuse reflective UV-vis, and ESR methods in order to determine the geometry of the main-chain CC bonds in the polymer. The data showed that the polymer obtained by the treatment has a fairly distorted trans conjugation length, i.e., bent trans structure in which less mobile unpaired electrons generated by the rotational scission of the original cis CC bonds are stabilized.  相似文献   

16.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

17.
Poly[2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylene‐(1‐cyanovinylene)] MEH‐CN‐PPV and its all‐trans model compound 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were synthesized via Knoevenagel condensation. All‐cis isomer and cistrans isomer of 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were prepared by the photoisomerization reaction. Comparison of the 1H NMR spectra between MEH‐CN‐PPV and three model compounds proved the occurrence of cis‐vinylene in the backbone of MEH‐CN‐PPV. According to the ratio between the cis‐vinylene signal and trans‐vinylene signal, the content of the cis‐vinylene could be estimated to be 15% in MEH‐CN‐PPV. This large cis‐vinylene content came from the rapid photochemical isomerization of cyanovinylene and was likely relative to the poor electroluminescence property of MEH‐CN‐PPV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1105–1113, 2008  相似文献   

18.
The isomerization and optical properties of the cis and trans isomers of tetraphenylethene (TPE) derivatives with aggregation‐induced emission (AIEgens) have been sparsely explored. We have now observed the tautomerization‐induced isomerization of a hydroxy‐substituted derivative, TPETH‐OH, under acidic but not under basic conditions. Replacing the proton of the hydroxy group in TPETH‐OH with an alkyl group leads to the formation of TPETH‐MAL, for which the pure cis and trans isomers were obtained and characterized by HPLC analysis and NMR spectroscopy. Importantly, cis‐TPETH‐MAL emits yellow fluorescence in DMSO at ?20 °C whereas trans‐TPETH‐MAL shows red fluorescence under the same conditions. Moreover, the geometry of cis‐ and trans‐TPETH‐MAL remains unchanged when they undergo thiol–ene reactions to form cis‐ and trans‐TPETH‐cRGD, respectively. Collectively, our findings improve our fundamental understanding of the cis/trans isomerization and photophysical properties of TPE derivatives, which will guide further AIEgen design for various applications.  相似文献   

19.
Homopolymerizations of butadiene (BD), isoprene (IP), and 2,3-dimethylbutadiene (DMBD) were carried out by a Gd(OCOCCl3)3-based catalyst, to investigate the effects of the energy levels of the monomers or the sterical factor of the methyl substituents on the polymerizability and the cis-selectivity of the monomers. The order of the polymerizability at 50°C was as follows: BD (4.5 kg of polymer/(mol of Gd h)) ∼ IP (4.8) > DMBD (0.6). On the other hand, the cis-selectivity of the polymers was as follows: BD (98%) > IP (94%) > DMBD (35%). These results suggest that the terminal BD and IP units are controlled by the cis configuration by the coordination between the penultimate cis-vinylene unit and the catalyst metal, whereas the penultimate DMBD unit unfavorably controls the terminal DMBD unit to the cis-1,4 configuration through the back-biting coordination with difficulty by two methyl substituents compared with the penultimate BD and IP units. The validity of the back-biting coordination was examined by MO calculation with σ-allylnickel complexes. According to the formation energy with respect to the BD–BD diad, the ciscis form is somewhat preferable to the transcis form through the coordination of the penultimate BD unit by ΔE = 0.028 au (ca. 17.6 kcal/mol). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2283–2290, 1998  相似文献   

20.
The spiro‐orthoester, cis‐2,3‐tetramethylene‐1,4,6‐trioxaspiro[4,4]nonane (cis‐TTN) ( I ), underwent rapid cationic photopolymerization when exposed to UV light using diphenyliodonium salts as a photoinitiator. The polymer, poly[(trans‐OCB)x‐(cis‐OCB)x‐(CHO)y] thus formed consisted of poly(trans‐2‐oxycyclohexyl butanoate) (trans‐OCB)x ( II ), poly(cis‐2‐oxycyclohexyl butanoate) (cis‐OCB)x ( III ), and poly‐ (1,2‐cyclohexene oxide) (CHO)y segments, and no expected pure poly(ether‐ester), that is, poly(2‐oxycyclohexyl butanoate), was isolated. The structure of the polymer was identified, and the mechanism of the reaction was deduced. The polymer thus formed exhibited expansion in volume during cationic photopolymerization when compared to that obtained by conventional cationic polymerization using a Lewis acid (e.g., BF3OEt2, CH3OSO2CF3, or SnCl4) as an initiator, which demonstrated volume shrinkage during polymerization. The volume expansion of the polymer during polymerization was due to (1) the lower content of the higher density (CHO)y segment in the polymer chain and, more importantly, (2) the higher and optimal mole ratio of (trans‐OCB)x and (cis‐OCB)x segments that led the polymer in a more disordered, less dense, and higher volumetric state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3680–3690, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号