首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure of amorphous polymer blends has been extensively studied in the past, but now there is a growing interest for polymer blends where one or more of the components can crystallize. In this study we investigate such blends, namely miscible polycarbonate (PC)/acrylic blends. Using small angle X-ray scattering (SAXS) measurements, combined with atomic force microscopy (AFM), electron microscopy (SEM), and optical microscopy, we demonstrate that the amorphous acrylic component mostly segregates inside the spherulites between the lamellar bundles (interfibrillar segregation). Varying the PC molecular weight or the mobility of the amorphous component (by changing its molecular weight and Tg) does not change the mode of segregation. So far qualitative predictions of the mode of segregation in semicrystalline polymer blends have been proposed using the δ parameter (the ratio between the diffusion coefficient D of the amorphous component in the blend and the linear crystallization rate G), introduced by Keith and Padden. Our results suggest that other parameters have to be considered to fully understand the segregation process. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2197–2210, 1998  相似文献   

2.
Hydrolysis of poly(L -lactide) (PLLA) films in 0.01N NaOH at 37°C was investigated by gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and polarizing optical microscopy. The change in molecular weight distribution and surface morphology of PLLA films during hydrolysis revealed that PLLA film hydrolysis in dilute alkaline solution proceeded mainly via the surface erosion mechanism. An insignificant dependence of the rate of weight loss per unit surface area on the PLLA film thickness also supported this conclusion. Etching of the outside of PLLA spherulites resulted in preferred hydrolysis of PLLA chains in the amorphous region. The disorientation of lamella and inhomogeneous erosion in the spherulites implied that hydrolysis of PLLA chains occurred predominantly in the amorphous region between the crystalline regions in the spherulites. The rate of weight loss per unit surface area decreased linearly with the increase in the initial crystallinity of PLLA film, while the radius of spherulites had practically no significant effect on the hydrolysis of PLLA film. The specific low molecular weight of PLLA chains produced by hydrolysis increased with the rise in annealing temperature of the PLLA film, suggesting that the PLLA chains released were the component of one fold in the crystalline region. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 59–66, 1998  相似文献   

3.
The relation between elasticity and yielding is investigated in a model polymer solid by Molecular‐Dynamics simulations. By changing the bending stiffness of the chain and the bond length, semicrystalline and disordered glassy polymers — both with bond disorder — as well as nematic glassy polymers with bond ordering are obtained. It is found that in systems with bond disorder the ratio τY/G between the shear yield strength τY and the shear modulus G is close to the universal value of the atomic metallic glasses. The increase of the local nematic order in glasses leads to the increase of the shear modulus and the decrease of the shear yield strength, as observed in experiments on nematic thermosets. A tentative explanation of the subsequent reduction of the ratio τY/G in terms of the distributions of the per‐monomer stress is offered. © 2017 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2017 , 55, 1760–1769  相似文献   

4.
An ultrasonic shear wave reflection method was applied to study film formation and temperature dependence of the complex shear modulus (G*G′ + iG″) in different amorphous films made of aqueous dispersions of acrylic-type copolymers. The data are compared with dynamic-mechanical measurements in the low frequency range. It is shown that the temperature dependence of the storage (G′) and the loss modulus (G″) for both methods can be fitted by the same set of parameters using the Havriliak–Negami function incorporating the Vogel–Fulcher–Tamman–Hesse equation for the temperature dependence of relaxation times. The temperature dependence of the relaxation times obtained from the fits to the ultrasonic shear modulus is compared to the shift factors of the dynamic-mechanical measurements. The agreement between both methods is good. This suggests an almost thermorheological simplicity of the samples for the main glass–rubber relaxation and demonstrates the capacity of the ultrasonic rheometer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1703–1711, 1998  相似文献   

5.
Composition profiles develop around growing PVDF spherulites in a blend with PMMA. These profiles assume stationary courses after a certain crystallization time provided that the overall degree of crystallinity is not too high. The composition-dependent growth rate and the diffusion-controlled remove of the surplus PMMA from the spherulite surface are then in a stationary equilibrium. The internal structure of the spherulites will then be homogeneous, too. Upon isothermal crystallization of a PVDF/PMMA = 60/40 (wt %) blend at 160°C for at least 4 h, the spherulites internal degree of crystallinity xc as related to the PVDF fraction obeys the inequality 55 wt % ≤ xc ≤ 84 wt %. The overall PMMA content within the spherulites as averaged over its whole inside has been determined by IR microscopy. It amounts to about 15 wt %. In contrast, the PMMA content of the amorphous phase within the spherulites (averaged again over its whole inside) ranges between 28 and 52 wt %. This composition jumps at the spherulite surface to 52 wt %. From the slope of the composition profiles outside the spherulites that have a width of more than 50 μm, the effective chain diffusion coefficient in blends as averaged over both components can be calculated to amount to (250 ± 100) μm2h−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2923–2930, 1998  相似文献   

6.
The rheological behavior of polyaniline‐(±champhor‐10‐sulfonic acid)0.5m‐cresol [PANI‐CSA0.5m‐cresol] gel nanocomposites (GNCs) with Na‐montmorillonite clay (intercalated tactoids) is studied. The shear viscosity exhibits Newtonian behavior for low shear rate (<2 × 10?4 s?1) and power law variation for higher shear rate. The zero shear viscosity (η0) and the characteristic time (λ) increase but the power law index (n) decrease with increase in clay concentration. In the GNCs storage modulus (G′) and loss modulus (G″) are invariant with frequency in contrast to the pure gel. The G′ and G′ exhibit the gel behavior of the GNCs up to 105 °C in contrast to the melting for the pure gel at 75.7 °C. The percent increase of G′ of GNCs increases dramatically (619% in GNC‐5) with increasing clay concentration. The conductivity values are 10.5, 5.65, 5.51, and 4.75 S/cm for pure gel, GNC‐1, GNC‐3, and GNC‐5, respectively, promising their possible use in soft sensing devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 28–40, 2008  相似文献   

7.
The effects of the lamellar growth direction, extinction rings, and spherulitic boundaries of poly(butylene succinate) (PBSU) on the spherulitic growth of poly(ethylene oxide) (PEO) were investigated in miscible blends of the two crystalline polymers. In the crystallization process from a homogeneous melt, PBSU first developed volume‐filling spherulites, and then PEO spherulites nucleated and grew inside the PBSU spherulites. The lamellar growth direction of PEO was identical with that of PBSU even when the PBSU content was about 5 wt %. PEO, which intrinsically does not exhibit banded spherulites, showed apparent extinction rings inside the banded spherulites of PBSU. The growth rate of a PEO spherulite, GPEO, was influenced not only by the blend composition and the crystallization temperature of PEO, but also by the growth direction with respect to PBSU lamellae, the boundaries of PBSU spherulites, and the crystallization temperature of PBSU, TPBSU. The value of GPEO first increased with decreasing TPBSU when a PEO spherulite grew inside a single PBSU spherulite. Then, GPEO decreased when TPBSU was further decreased and a PEO spherulite grew through many tiny PBSU spherulites. This behavior was discussed based on the aforementioned factors affecting GPEO. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 539–547, 2009  相似文献   

8.
The spinnability and polydispersity of polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO)/H2O spinning solutions with conventional PAN molecular weight and comparative high PAN concentration have been investigated using a cone‐plate rheometer. It is observed from the measurements that, the viscosities of the solutions decreased with the rising of shear rate, and then stabilized to almost the same value, regardless of the PAN concentration. The chain orientation in the fiber formed under constant shear rate cannot be changed considerably even after long relaxation of more than 900s. For dynamic experiments, a steady increase of both G′ and G″ with escalating oscillation frequency was seen for all samples. Higher viscous‐elastic modulus at higher H2O content was found, too. It is also concluded from the log G′ ? log G″ plot and the gel point that the PAN/DMSO/H2O system with regular PAN molecular weight behaves very close to a mono‐disperse system, thus very suitable for gel spinning and for preparation of high performance PAN precursor fiber. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1437–1442, 2009  相似文献   

9.
Bounds on the elastic constants are derived for semicrystalline polymers whose local morphology is lamellar. Local response matrices (stiffness and compliance) are formulated in three dimensions that simultaneously incorporate uniform in-plane strain and additive forces from layer to layer of crystalline and amorphous phases and uniform stress and additive displacements normal to the lamellar surfaces. Spatial averaging of the stiffness and compliance matrices under the assumption of axially symmetric orientation gives the upper and lower bounds on the longitudinal and transverse tensile moduli and the axial and transverse shear moduli as functions of the separate phase elastic constants, the volume percent crystallinity, and the moments of the orientation 〈cos2θ〉 and 〈cos4θ〉. The bounds are much tighter than the Voight upper and Reuss lower bounds that do not recognize phase geometry. Using the known crystal elastic constants of polyethylene, sample calculations on isotropic unoriented materials show that the divergence of bounds at high crystallinity necessitated by the extreme crystal anisotropy shows up only at very high crystallinity. At low temperature the bounds are tight enough to specify G1, the amorphous modulus, from the measured G and the known crystal elastic constants. At higher temperatures and lower G, the bounds are not tight enough for this purpose but the shear modulus versus crystallinity and temperature data are well fitted by the lamellar lower bound using a temperature-dependent, crystallinity-independent G1.  相似文献   

10.
The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 65–73, 1998  相似文献   

11.
Conformational changes occurring during thermally‐induced crystallization of poly(trimethylene terephthalate) (PTT) by annealing have been studied using density measurement, differential scanning calorimetry (DSC), and mid‐infrared spectroscopy (MIR). Infrared spectra of amorphous and semicrystalline PTT were obtained, and digital subtraction of the amorphous contribution from the semicrystalline PTT spectra provided characteristic MIR spectra of amorphous and crystalline PTT. The normalized absorbance of 1577, 1173, and 976 cm?1 were plotted against the crystallinity showing that these bands can be used unambiguously to represent the trans conformation while the band at 1358 cm?1 can be used to represent gauche conformation of methylene segment. The presence of a weak band at 1358 cm?1 in the amorphous spectrum suggested that a small amount of gauche conformation is present in the amorphous phase. Infrared spectroscopy has been used for the first time as a means to estimate the trans and gauche conformations of methylene segments in PTT as a function of Ta. The amount of gauche conformation was plotted against the crystalline fraction and the extrapolation of this plot to zero crystalline fraction provided a value of 0.07, suggested that the pure amorphous phase consist of ~ 7% gauche conformation. It was found that the amorphous and crystalline gauche conformation increases at the expense of amorphous trans conformation during thermally induced crystallization of PTT. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1497–1504, 2008  相似文献   

12.
The drawing of semicrystalline (33 and 50%) poly(ethylene terephthalate) (PET) films has been studied by solid-state coextrusion. Because of its brittleness and opacity, isotropic and semicrystalline PET film is of little practical use. Early attempts to cold-draw crystalline films led to fracture in contrast to deformation of amorphous PET. However, we have succeeded in systematically preparing films with extrusion draw ratios ≤4.4 from semicrystalline PET. In many cases, the properties of the drawn extrudates, as a function of extrusion temperature Text and extrusion draw ratio EDR, were similar to those prepared from amorphous PET. However, some remarkable differences have also been found. In the case of coextrudates prepared from isotropic 50% crystalline PET, we found that the larger the deformation, the lower the apparent resulting crystallinity. In the extreme, a 34% reduction in crystallinity after deformation was observed. For the coextrudates drawn from initially 33% crystalline PET, slightly different behavior occurred. For Text ≤ 90°C, all extrudates showed crystallinities lower than the original isotropic film, with a minimum at EDR = 3; for Text ≥ 110°C, crystallinities were slightly greater than in the original film and increased with EDR. Qualitative measurements of heats of fusion were in agreement with density gradient results for PET crystallinity. In contrast is our previous finding that extrudates from initially amorphous PET always increase in crystallinity with EDR, because of stress-induced crystallization. The results now suggest that in the Text range investigated, the initial spherulitic structure is at least in part destroyed on drawing. In addition, the percent crystallinity is revealed to be dependent on Text, with lower values at lower temperatures. Mechanical tests show that the extrudates are similar or sometimes higher in tensile modulus when compared to amorphous PET drawn under the same conditions.  相似文献   

13.
We use dissipative particle dynamics simulation to study the role of the intramolecular stiffness in the crystallization process of aromatic polyetherimides. We have developed and parameterized a coarse‐grained model for polyimides R‐BAPB and R‐BAPS, which have similar chemical structures but different macroscopic properties. The former one is known as semicrystalline, while the latter one is amorphous. In our model, the only difference between these two polyimides is the intramolecular stiffness. We show that this model can reasonably reproduce the structure formation in polyimide melts. We observe initial stages of crystallization of polyimide R–BAPB while R‐BAPS stays amorphous. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1254–1265  相似文献   

14.
Developing the use of polymers from renewable sources to build hydrogels with tailored mechanical properties has become an increasing focus of research. The impact of the thermo‐reversible physical networks of gelatin (arising from the formation of triple‐helices) on the structure formation of a chemical network, obtained by crosslinking with glutaraldehyde (a non‐catalytic crosslinker), was studied using optical rotation, oscillatory rheology, and large strain mechanical deformation. We observed a direct correlation between the storage shear modulus of the chemical network grown in the gel state (i.e., simultaneously with the physical network) and the amount of gelatin residues in the triple‐helix conformation (χ). Since χ is directly affected by temperature, the value of the storage modulus is also sensitive to changes in the temperature of gel formation. χ values as low as 12% lead to an increase of the shear storage modulus of the crosslinked gel by a factor of 2.7, when compared to a chemical network obtained in the sol state (i.e., in the absence of a physical network). Our results show that the physical network acts as a template, which leads to a greater density of the chemical crosslinks and a corresponding higher elastic modulus, beyond what is otherwise achieved in the absence of a physical network. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1850–1858  相似文献   

15.
Isothermal crystallization rates of semicrystalline poly(methoxypoly(ethylene glycol) methacrylate) brushes on gold‐coated substrates were measured by polarized optical microscopy. Growth rates for crystal radii, which were essentially constant for each film, initially increased with film thickness and then leveled off for film thicknesses >300 nm. Avrami–Evans theory suggests that the spherulites exhibit one‐dimensional growth with heterogeneous nucleation. Compared with physisorbed analogs, polymer brushes crystallized slower due to the restriction of chain mobility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1955–1959, 2010  相似文献   

16.
Temperature dependences of spherulite morphology and crystal orientation of poly(vinylidene fluoride) (PVDF) were systematically investigated via a combinatorial method. The method created a temperature gradient ranging from 130 to 200 °C. Results show that the preferential orientation of the crystallites changes with the crystallization temperature. The crystallization at 169 °C gives the most highly developed crystalline state of PVDF crystalline form II (α form), in which the spherulite size is maximal, and the crystallite sizes are also the longest, about 200 nm along the b axes. Besides, the a‐axis is almost parallel to the film normal. It indicates that the crystallization rate is the highest in the b‐axis direction. The perferential orientation at higher temperatures may be attributed to the confined 2D growth of the PVDF spherulites in the thin film, whereas the spherulites grow in the 3D mode at lower temperatures. The crystallization behavior revealed in the method is consistent with the results of melt isothermal crystallization experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 253–261  相似文献   

17.
Ring opening polymerization of ε‐caprolactone was realized in the presence of monomethoxy poly(ethylene glycol) with Mn = 1000 and 2000, using Zn(La)2 as catalyst. The resulting PCL‐PEG diblock copolymers with CL/EO repeat unit molar ratios from 0.2 to 3.0 were characterized by using DSC, WAXD, SEC, and 1H NMR. The crystal phase of PCL blocks exist in all polymers, and the crystallization ability of PCL blocks increases with CL/EO ratio. PEG blocks are able to crystallize for copolymers with CL/EO below 1.0 only. Melt crystallization results were analyzed with Avrami equation. The Averami exponent n is around 3.0 in most cases, in agreement with heterogeneous nucleation with three dimensional growth. The morphology of the crystals was observed by using POM. Rod‐like crystals were found to grow in 1, 3 or 2, 4 quadrants for samples with low molecular weights. In the case of a copolymer with Mn,PEG = 2000 and Mn,PCL = 800, PEG blocks could crystallize and grow on PCL crystals after PCL finished to form rod‐like crystals, leading to formation of poorly or well structured spherulites. The spherulite growth rate (G) was determined at different crystallization temperatures (Tc) ranging from 9 to 49 °C. All the copolymers present a steady G decrease with increasing crystallization temperature due to lower undercooling. On the other hand, increase of CL/EO ratio leads to increase of G in the same Tc range. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 286–293, 2010  相似文献   

18.
We have established time–temperature transformation and continuous-heating transformation diagrams for poly(ether–ether–ketone) (PEEK) and PEEK/poly(ether–imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919–930, 1998  相似文献   

19.
iPS‐b‐PDMS‐b‐iPS triblock copolymers were prepared by hydrosilylation of vinyl‐terminated isotactic polystyrenes (iPS) with α,ω‐bis(dimethylsilane)‐terminated poly(dimethylsiloxane)s (PDMS). As a function of the molecular weights of the two components, the triblock copolymer composition was varied between 9.0 and 98 wt % iPS. The resulting triblock copolymers remained soluble during block copolymer synthesis due to slow iPS crystallization in solution. At iPS content exceeding 31 wt %, the iPS crystallization was achieved by postpolymerization annealing and melt processing. The triblock copolymers melted above 200 °C with melting temperatures very similar to those of the corresponding iPS homopolymers. Nanostructure and microstructure formation of both amorphous and semicrystalline triblock copolymers were examined by means of light microscopy, atomic force microscopy, and TEM measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The real‐time crystallization of absorbable poly(p‐dioxanone) (PDS) was studied by dielectric relaxation spectroscopy. The dipole dynamic changes in the diminishing amorphous phase were investigated over a wide range of crystallization conditions. The location, shape, and magnitude of the α relaxation and the apparent activation energy were monitored and compared before and after the onset of crystallization. We observed no correlation between the degree of crystallinity and the location (hence, the most probable relaxation time, τ) of the α relaxation from just after the initiation up to the latest stages of the isothermal crystallization. However, an abrupt change in the intensity of the α process and the apparent activation energy allowed for the precise detection of the onset of crystallization. This was probably caused by a reorganization of dipole units occurring a few moments before the crystallization began. As crystallization proceeded, an asymmetric broadening of the α peak was observed that was directly influenced by the appearance of a new lower frequency process that originated in the highly confined amorphous portion located inside the spherulites. Finally, PDS crystallization kinetics determined from the changes of the relaxed permittivity with time are discussed and compared with calorimetric and optical microscopy data. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2436–2448, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号