首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel mesogen‐jacketed liquid‐crystal polymers, poly[2,5‐bis(4′‐alkoxyphenyl)‐styrene] (P‐n, n = 1–11), were prepared via free‐radical polymerization of newly synthesized monomers, 2,5‐bis(4′‐alkoxyphenyl)styrene (M‐n, n = 1–11). The influence of the alkoxy tail length on the liquid‐crystalline behaviors of the monomers and the polymers was investigated with differential scanning calorimetry (DSC), thermogravimetry, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The monomers with n = 1–4, 9, and 11 were monotropic nematic liquid crystals. All other monomers exhibited enantiotropic nematic properties. Their melting points (Tm's) decreased first as n increased to 6, after which Tm increased slightly at longer spacer lengths. The isotropic–nematic transition temperatures decreased regularly with increasing n values in an odd–even way. The glass‐transition temperatures (Tg's) of the polymers first decreased as the tail lengths increased and then leveled off when n ≥ 7. All polymers were thermally stable and entered the mesophase at a temperature above Tg. Upon further heating, no mesophase‐to‐isotropic melt transition was observed before the polymers decomposed. WAXD studies indicated that an irreversible order–order transition for the polymers with short tails (n ≤ 5) and a reversible order–order transition for those with elongated tails (n ≥ 6) occurred at a temperature much higher than Tg. However, such a transition could not be identified by POM and could be detected by DSC only on heating scans for the polymers with long tails (n ≥ 7). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1454–1464, 2003  相似文献   

2.
Binary phase diagrams were constructed from laterally substituted methyl azo/ester derivatives, namely 4-(4″-substituted phenylazo)-3-methyl phenyl-4″-alkoxy benzoates (Ina–d). In this group of compound the unsubstituted and chloro-substituted derivatives possess the nematic phase monotropically, while the nitro and methyl analogues are enantiotropically nematogenic. The binary phase diagrams constructed were made once from the monotropic nematogens with each other, and another with the enantiotropic nematogens. In both the cases enantiotropic nematic phase was observed that covers a wide range of composition. The mesophase behaviour of all binary mixtures was investigated by differential scanning calorimetry (DSC) and polarised light microscopy (PLM). The nematic phase was exhibited in all binary mixtures. Independent of the alkoxy chain length, the entropy change, ΔSNI of the N–I transition of pure components was found to vary irregularly with the anisotropy of polarisability (X) of the polar substituent, X.  相似文献   

3.
Two new mesogenic homologous series of liquid crystalline cinnamates with substituted ethyl tails, β‐methoxyethyl [4‐(4′‐n‐alkoxycinnamoyloxy)benzoates (I) and β‐chloroethyl [4‐(4′‐n‐alkoxycinnamoyloxy)benzoates (II), have been synthesized and characterized by a combination of elemental analysis and standard spectroscopic methods. In series I, lower‐chain members exhibit nematic mesophase, middle members exhibit enantiotropic nematic as well as smectic A (SmA) mesophases, whereas higher members exhibit only an enantiotropic SmA mesophase. In series II, methoxy to n‐butyloxy derivatives exhibit a monotropic nematic mesophase. The SmA mesophase commences from n‐propyloxy derivative as monotropic and persists up to the last member synthesized. The mesomorphic properties of present series were compared with each other and with a structurally related mesogenic homologous series to evaluate the effects of substituted ethyl tail and cinnamoyloxy central linkage on mesomorphism.  相似文献   

4.
A series of side chain liquid crystal polyurethanes (CnCNPs), in which the spacer length was varied from 2 to 12 methylene units, were synthesized by the addition polymerization of α-[bis(2-hydroxyethyl)amino]-ω-(4-cyanoazobenzene-4′-oxy)alkanes (CnCN-diols) with hexamethylene diisocyanate. The liquid crystalline properties of CnCNPs were characterized by means of differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. Polyurethanes with spacer length 4 or higher exhibited mesomophic properties. C4CNP and C5CNP exhibited an enantiotropic nematic mesophase, while C6-C12CNPs exhibited enantiotropic bilayer smectic mesophases. CnCNPs have a high tendency to crystallize; crystallization is kinetically controlled. Polyurethane's backbone crystallization is closely related to hydrogen bonding. To establish the role of hydrogen bonding in mesophase formation as well as crystallization, Fourier transform infrared spectroscopy studies of CnCNPs were carried out at different temperatures focusing on H-bonds between the N H and CO groups of the urethane backbone. With increasing temperature, CO and N H stretching bands were evenly shifted to higher wavenumbers, with two exceptions (C4CNP and C5CNP) discussed in detail in the text. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2135–2146, 1998  相似文献   

5.
The synthesis and living cationic polymerization of 11-[(4-cyano-4′-biphenyl)oxy]-undecanyl vinyl ether ( 6 – 11 ) are described. The mesomorphic phase behavior of poly( 6 – 11 ) with different degrees of polymerization was compared to that of 6 – 11 and of 11-[(4-cyano-4′-biphenyl) oxy] undecanyl ethyl ether ( 8 – 11 ) which is the model compound of the monomeric structural unit of poly( 6 – 11 ). 6 – 11 displays a monotropic SA and a monotropic nematic mesophase while 8 – 11 an enantiotropic SA mesophase. Poly( 6 – 11 ) with low degrees of polymerization exhibits an enantiotropic SA mesophase. Poly( 6 – 8 ) with high degrees of polymerization displays an enantiotropic SX (i. e., an unidentified smectic phase) and an enantiotropic SC mesophase. These results demonstrate that the transformation of the nematic mesophase of the monomer into a smectic mesophase after polymerization, occurs at the level of monomeric structural unit.  相似文献   

6.
The γ-substituted β-diketonate 2,4-dioxo-3-pentyl 4-[4-(n-octyloxy)cinnamoyl]oxybenzoate 1 and its pyrazole and isoxazole derivatives (2 and 3 respectively) have been synthesized and characterized by the spectroscopic methods and elemental analysis. The mesogenic properties of these compounds have been studied by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). A monotropic nematic mesophase was observed for the β-diketonate 1, in contrast, the pyrazole 2 displays an enantiotropic smectic A and isoxazole 3 exhibits an enantiotropic nematic mesophase. The relationship between the structure and liquid crystalline properties has also been discussed.  相似文献   

7.
Nylon 6 was reacted with trimellitic anhydride (TMA) at 230 °C so that a complete degradation to N‐(5‐carboxy‐pentamethylene) trimellitimide was obtained. The crude imide dicarboxylic acid was reacted in situ with 4,4′‐bisacetoxy biphenyl whereby an enantiotropic smectic polyesterimide was obtained. Analogous degradation and polycondensation reactions were also performed with nylon 11 and nylon 12. Parallel syntheses were conducted with isolated imide dicarboxylic acids. Furthermore, the crude imide dicarboxylic acid obtained from nylons 6, 11, and 12 were polycondensed in situ with diacetates of hydroquinone or substituted hydroquinone in combination with various amounts of acetoxy benzoic acid or 6‐acetoxy‐2‐naphthoic acid. In this way enantiotropic nematic copoly(ester‐imide)s were prepared. The phase transition of all LC‐poly(ester‐imide)s were characterized by DSC measurement and optical microscopy. In addition, a series of isotropic poly(ester‐imides)s was prepared using nonmesogenic bisphenols, such as bisphenol A, as comonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1630–1638, 2000  相似文献   

8.
The influence of molecular weight on thermal transitions and on their thermodynamic parameters is discussed for a random thermotropic liquid crystalline copolyether based on the reaction of a 1:1 molar mixture of 1,5-dibromopentane and 1,7-dibromoheptane with 4,4′-dihydroxy-α-methylstilbene. Optimum phase transfer catalyzed polyetherification reaction conditions were established for the synthesis of polymers containing bromoalkane chain ends only over a wide variety of molecular weights. All these copolyethers present a crystalline and an enantiotropic nematic mesophase over the entire range of molecular weights studied. Both the thermal transitions and their thermodynamic parameters are strongly molecular weight-dependent up to M n = 10,000–12,000, after which they remain constant. The enthalpies and entropies of isotropization of the copolyethers are higher than those of melting. This is in contrast to the same thermodynamic parameters of the corresponding homopolyethers. The enthalpies and entropies of isotropization of both homopolymers and copolymers present similar values, suggesting that copolymerization does decrease the degree of order in the crystalline phase but does not significantly change the alignment degree of the mesogenic units in the nematic mesophase.  相似文献   

9.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

10.
A series of 1-methyl-1H-benzimidazole-based compounds, 2-(4?-alkoxy-1,1?-biphenyl-4-yl)-1-methyl- 1H-1,3-benzimidazole derivatives (nPPMx-M) with terminal hydrogen, methyl and nitro moieties (coded as nPPMH-M, nPPMM-M and nPPMN-M, respectively), were prepared and their structures were characterised. The compounds display enantiotropic smectic mesophases for hydrogen and methyl terminated compounds (nPPMH-M and nPPMM-M), and enantiotropic nematic mesophases for nitro terminated compounds (nPPMN-M) with short alkoxy chain below than 10 carbon atoms, where the mesophase ranges are 24–72°C and 74–104°C on heating and cooling processes for nPPMH-M, 90–119°C and 110–135°C for nPPMM-M, and 102–129°C and 113–207°C for nPPMN-M, respectively. It is noted that the compounds nPPMx-M exhibit much lower melting points and much wider mesophase range both in heating and cooling than non-1-methyl substituted analogs, which are ascribed to the disruption of hydrogen bonding among the molecules caused by methyl substitution at 1-position of benzimidazole. Meanwhile, among the compounds nPPMx-M, much wider mesophase ranges are obtained for nPPMM-M and nPPMN-M, indicating a much high mesophase stability for the compounds bearing terminal moiety (CH3 and NO2).  相似文献   

11.
Fluorine is widely used as a lateral substituent to modify the physical properties of liquid crystals. Here, laterally monofluorinated compounds, 2-(4?-alkoxy-2-fluorobiphenyl-4-yl)-benzoxazole derivatives (nPPF(2)Bx) bearing different substituents (H, CH3, NO2, coded as nPPF(2)BH, nPPF(2)BM and nPPF(2)BN, respectively) at 5-position, were synthesised and characterised. It is interesting to note that these only display enantiotropic nematic mesophases with mesophase ranges of 12–28°C and 13–45°C on heating and cooling for nPPF(2)BH, 46–97°C and 62–120°C for nPPF(2)BM and 82–108°C and 87–113°C for nPPF(2)BN, which are very different from the corresponding monofluorine-substituted analogue (compounds I) with enantiotropic smectic or smectic/nematic mesophases. The enhanced nematic mesophase is attributed to the reduced π–π interaction/conjugation resulting from the twisted structure of the molecule caused by the introduction of a fluorine atom into the inter-ring of the biphenyl unit. These results suggest that modification of the monofluorine substituent position is an effective method to improve the nematic mesophase in benzoxazole-liquid crystals.  相似文献   

12.
A class of extended 2,5‐disubstituted‐1,3,4‐oxadiazoles R1‐C6H4‐{OC2N2}‐C6H4‐R2 (R1=R2=C10H21O 1 a , p‐C10H21O‐C6H4‐C?C 3 a , p‐CH3O‐C6H4‐C?C 3 b ; R1=C10H21O, R2=CH3O 1 b , (CH3)2N 1 c ; F 1 d ; R1=C10H21O‐C6H4‐C?C, R2=C10H21O 2 a , CH3O 2 b , (CH3)2N 2 c , F 2 d ) were prepared, and their liquid‐crystalline properties were examined. In CH2Cl2 solution, these compounds displayed a room‐temperature emission with λmax at 340471 nm and quantum yields of 0.730.97. Compounds 1 d , 2 a – 2 d , and 3 a exhibited various thermotropic mesophases (monotropic, enantiotropic nematic/smectic), which were examined by polarized‐light optical microscopy and differential scanning calorimetry. Structure determination by a direct‐space approach using simulated annealing or parallel tempering of the powder X‐ray diffraction data revealed distinctive crystal‐packing arrangements for mesogenic molecules 2 b and 3 a , leading to different nematic mesophase behavior, with 2 b being monotropic and 3 a enantiotropic in the narrow temperature range of 200210 °C. The structural transitions associated with these crystalline solids and their mesophases were studied by variable‐temperature X‐ray diffractometry. Nondestructive phase transitions (crystal‐to‐crystal, crystal‐to‐mesophase, mesophase‐to‐liquid) were observed in the diffractograms of 1 b, 1 d , 2 b, 2 d , and 3 a measured at 25200 °C. Powder X‐ray diffraction and small‐angle X‐ray scattering data revealed that the structure of the annealed solid residue 2 b reverted to its original crystal/molecular packing when the isotropic liquid was cooled to room temperature. Structure–property relationships within these mesomorphic solids are discussed in the context of their molecular structures and intermolecular interactions.  相似文献   

13.
Terminal vinyl-based benzoxazole liquid crystalline compounds, 2-(3-fluoro-4?-alkoxy-1,1?-biphenyl ?4-yl)-5-(2-propenyloxymethyl)-benzoxazole (nPPF(2)BP), were synthesised and their structures were confirmed by infrared (IR) spectra, proton nuclear magnetic resonance (1H-NMR) spectra, gas chromatography with electron impact-mass spectrometry (GC/EI-MS), matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry and elemental analysis (EA). The compounds show enantiotropic smectic/nematic phases with mesophase ranges are 71–97 °C and 87–136°C on heating and cooling processes for nPPF(2)BP, respectively. They give low melting points due to lateral fluoro substituent and flexible terminal 2-propenyloxymethyl chain. It is found that the compounds nPPF(2)BP with shorter alkoxy chain (n = 3, 4) exhibit a wide range of nematic mesophase, which is ascribed to enhanced π–π interaction caused by terminal vinyl moiety, whereas further elongation of the terminal alkoxy chain results in supressing nematic phase and increasing smectic mesophase. Compared with methyl terminated analogues, 2-propenyloxymethyl terminated compounds nPPF(2)BP display much lower melting points and wider or comparable mesophase range both in heating and cooling.  相似文献   

14.
A series of new and high-purity hydrocarbon liquid crystal monomers were synthesized through the acylation reaction, deoxygenation reaction, and Grignard reaction. 1H-NMR spectra and elemental analyses were used to examine their purity. The liquid crystalline polysiloxane polymers were obtained by grafting the monomers onto poly(methylhydrosiloxane). The thermal transition temperature, mesomorphic properties, and mesophase textures of the monomers and the polymers were determined by differential scanning calorimetry (dsc), polarized optical microscopy, and X-ray diffraction analysis. Moreover, we observed the even–odd effect of the smectic/isotropic transition temperature with the length variation of the substituents. In this study, we found by X-ray diffraction that the liquid crystalline polysiloxane polymers undergo a transition from smectic B to smectic E mesophase. However, dsc has difficulty detecting the phase transition process. By considering the spin–lattice relaxation time (T1), we can systematically explain the relation between the flexibility of the substituent with the smectic/isotropic transition temperature. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2849–2863, 1998  相似文献   

15.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

16.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Two new mesogenic homologous series, each containing 1,3,5-trisubstituted pyrazolone derivatives, 4-n-alkoxyphenyl and Schiff base–cinnamate central linkages, have been synthesised to give 4-[(5-hydroxy-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl) methyleneamino] phenyl 3-(4-n-alkoxyphenyl)acrylate [Series-A] and 4-[(5-hydroxy-3-methyl-1-p-tolyl-4,5-dihydro-1H-pyrazol-4-yl)methyleneamino] phenyl 3-(4-n-alkoxyphenyl)acrylate [Series-B] and their Cu(II) complexes have also been synthesised. These compounds were characterised by elemental analysis, Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), carbon-13 NMR (13C NMR) and ultraviolet (UV)-visible and mass spectral studies. Their mesomorphic behaviour was studied by polarising optical microscope (POM) with a heating stage. POM data were compared with differential scanning calorimetry thermograms. In Series-A and -B, all compounds exhibit mesomorphism. Series-A compounds exhibit an enantiotropic nematic mesophase except propyl derivative, while a smectic A (SmA) mesophase is observed from the heptyl derivative and persists up to the last member of the homologous series. n-Heptyloxy derivative is monotropic for SmA phase. Series-B compounds also exhibit the enantiotropic nematic mesophase, while the SmA mesophase is observed from the heptyl derivative and persists up to the last member of the homologous series. n-Dodecyloxy derivative exhibits monotropic SmA and nematic mesophases. The mesomorphic properties of both series are compared with each other and the other structurally related compounds. The study reveals that cinnamate linkage containing liquid crystals have higher thermal stability compared to structurally related series containing chalcone linkage. In case of complex series, only one compound from each series gives nematic mesophase.  相似文献   

18.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

19.
To investigate the influence of hydrogen bonding on the properties of polyimides (PIs) containing rigid rod‐like groups, five symmetrical diamines containing benzimidazole, benzoxazole, and hydroxy group were synthesized, and then a series of PIs were prepared. Results showed that hydroxyl‐containing poly(benzoxazole imide)s possess higher glass transition temperature (Tg) and dimensional stabilities than their corresponding poly(benzoxazole imide)s. Moreover, the corresponding poly(benzimidazole imide)s presented the best performances, such as the highest Tg, the highest char yield and the highest dimensional stabilities. The influence of hydrogen bonding of benzimidazole on the properties of PIs was stronger than that of hydroxyl groups. Hydroxyl‐containing poly(benzoxazole imide)s were formed in crosslinking structures after heat treatment at 400 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 570–581  相似文献   

20.
We synthesised a novel family of liquid crystalline 1,4-phenylene bis(4-alkylthio benzoates), of which homologues with different alkyl chain lengths of 1–8 were designed, to investigate the structure–property relationship. The mesogenic incidence and tendency were found to be strongly dependent on the carbon numbers in the terminal alkyl chains. Even members formed widely monotropic or enantiotropic nematic (N) phases compared to odd members that showed either none or monotropic-narrower ones. The temperature dependence of birefringence (Δn) for the hexylthio homologue was evaluated and compared to that for a hexyloxy counterpart. It was found that the hexylthio homologue exhibited higher Δn values than the hexyloxy counterpart over the entire range of near TINT. In addition, wide-angle X-ray diffraction measurements, using magnetically aligned specimens, found enhanced cybotactic nematic tendency with smectic (Sm) A-like temperature dependence for the hexylthio analogue, due to the intermolecular attractive S···S interaction, in comparison with the hexyloxy analogue exhibiting N phase with clear Sm C-type clusters. We revealed the actual benefits of alkylthio groups in the fluid N phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号