首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of phosphorous-containing aliphatic polyesters were synthesized by high-temperature solution condensation of 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene (III) with various aromatic acid chlorides in o-dichlorobenzene. All polyesters are amorphous and readily soluble in many organic solvents such as DMAc, NMP, DMSO, and o-dichlorobenzene at room temperature or upon heating. These polyesters are thermally quite stable. The glass transition temperatures of these aliphatic polyesters ranged from 126.6 to 162.2°C. The degradation temperatures (Td onset) in nitrogen ranged from 424 to 448°C, and the char yields at 700°C are 20–32%. The activation energies of degradation ranged from 160.9 to 226.0 kJ/mol. The LOIs of these polyesters ranged from 36 to 43. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3051–3061, 1998  相似文献   

2.
New tetraphenylated heterocyclic diol, 2,5-bis(4-hydroxyphenyl)-3,4-diphenylfuran, was synthesized by the oxidative coupling of 4-methoxydeoxybenzoin as a starting material, followed by simultaneous cyclodehydration and demethylation. Tetraphenylfuran-containing polyarylates with inherent viscosities of 0.2–0.7 dL/g were prepared from various diacid chlorides by both solution polycondensation and phase transfer catalyzed two-phase polymerization methods. All the polymers were easily soluble in dichloromethane, o-chlorophenol, 1,4-dioxane, pyridine, and N-methyl-2-pyrrolidone and showed semicrystalline patterns as evidenced by the X-ray diffraction studies. These polyarylates have glass transition temperatures in the range of 222–236°C and 10% weight loss was observed above 430°C in both air and nitrogen.  相似文献   

3.
A series of new poly(o-hydroxy amide-imide)s with high molecular weights were synthesized by low-temperature solution polycondensation from a preformed imide ring and chloro- or dichloro-substituted p-phenylene-containing diacid chlorides of 2,5-bis(trimellitimido)chlorobenzene or 1,4-bis(trimellitimido)-2,5-dichlorobenzene and three bis(o-amino phenol)s. All the poly(o-hydroxy amide-imide)s were readily soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Transparent and flexible films of these polymers were cast from their solutions. The cast films had tensile strengths ranging from 88 to 102 MPa and elongations at break of 8–12%. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide-imide)s afforded novel poly(benzoxazole-imide)s. The poly(benzoxazole-imide)s exhibited glass-transition temperatures in the range of 310–338 °C and were stable up to 500 °C in nitrogen, with 10% weight-loss temperatures recorded between 550 and 570 °C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4151–4158, 1999  相似文献   

4.
Two new triphenylamine-based bis (o-aminophenol) monomers, 4,4′-diamino-3,3′-dihydroxytriphenylamines, were successfully synthesized by the cesium fluoride-mediated condensation of 2-(benzyloxy)-4-fluoronitrobenzene with aniline derivatives, followed by simultaneous deprotection and reduction. Aromatic polybenzoxazoles having inherent viscosities of 0.58–1.05 dL/g were obtained by the low-temperature solution polycondensation of the bis(aminophenol)s with various aromatic dicarboxylic acid chlorides and the subsequent thermal cyclodehydration of the resultant poly(hydroxyamide)s. All the polybenzoxazoles were amorphous, and most of them were soluble in organic solvents such as m-cresol and o-chlorophenol. Flexible and tough films of polybenzoxazoles could be cast from the DMAc solutions of some aromatic poly(hydroxyamide)s, followed by thermal cyclodehydration. The glass transition temperatures and 10% weight loss temperatures of the polybenzoxazoles under nitrogen were in the range of 262–327 and 610–640°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1987–1994, 1998  相似文献   

5.
3-(4-Aminophenyl)-5-(3-aminophenyl)-2-pyrazoline as well as the 1-acetyl- or 1-benzoyl-substituted derivatives of this compound were synthesized and used for preparing a new series of polyamides and polyimides. Characterization of polymers was accomplished by inherent viscosity, 1H-NMR, 13C-NMR, x-ray, DTA, TMA, TGA, and isothermal gravimetric analysis. The properties of polymers were correlated with their chemical structures. They were amorphous or microcrystalline and soluble in polar aprotic solvents, CCl3COOH, and m-cresol. The polyamides showed an excellent solubility being soluble even in o-dichlorobenzene, 1,2-dichloroethane, and chloroform. The polymers displayed Tg at 127–163°C and softening at 150–195°C. The polyamide bearing unsubstituted pyrazoline moieties was remarkably more hydrophilic than those containing 1-acetyl- or 1-benzoyl-substituted pyrazoline segments. Upon curing, crosslinked polymers were obtained and their thermal stability was evaluated. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1353–1361, 1997  相似文献   

6.
New polyarylates having benzopinacolone units were synthesized from 2,2-bis(4-hydroxyphenyl)-1,2-diphenylethanone and aromatic dicarboxylic acid chlorides. The polymers having an inherent viscosity of 0.71–0.94 dL/g were obtained by the two-phase method using toluene as an organic solvent. The polymers were easily soluble in various organic solvents and had high glass transition temperatures in the range of 200–240°C. An aromatic polyether having benzopinacolone unit was also prepared. However, its inherent viscosity was low because of the occurrence of a side reaction. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2229–2235, 1998  相似文献   

7.
A series of new polyamides 3 were synthesized by direct polycondensation of the 1,6-bis[4-(4-aminophenoxy)phenyl]diamantane (1) with various dicarboxylic acids. The polyamides had inherent viscosities of 0.45–1.90 dL/g and number-average molecular weights (Mn) of 24,000–110,000. Dynamic mechanical analysis (DMA) reveals that polymers 3 have two relaxations on the temperature scale between −100 and 400°C. Their α relaxations occurred at high temperatures, ranging from 338 to 389°C. Moreover, these polymers remained quite stable at high temperatures and maintained good mechanical properties (G′ = ca. 108 Pa) up to temperatures close to the main transition markedly exceeding 350°C. Due to the bulky diamantane elements and the flexible ether segments, the polymers 3 were amorphous and soluble in a number of organic solvents such as pyridine, N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc). The polyamides 3 have tensile strengths of 56.7–90.2 MPa, elongation to breakage values of 7.5–27.7%, and initial moduli of 1.8–2.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2185–2192, 1998  相似文献   

8.
Polyarylates having inherent viscosities up to 1.02 dL/g were synthesized both by the phase-transfer catalyzed two-phase polycondensation of 2,2′-bibenzoyl chloride with various bisphenols and by the high-temperature solution polycondensation of biphenyl-2,2′-diol with aromatic dicarboxylic acid chlorides. All the polyarylates were amorphous and soluble in a variety of organic solvents including N,N-dimethylformamide, N-methyl–2-pyrrolidone, chloroform, m-cresol, and pyridine. Transparent and flexible films of these polymers could be cast from the chloroform solutions. These polyarylates had glass transition temperatures in the range of 120–250°C and began to lose weight at around 380°C in air. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Novel aromatic polyimides containing tetraphenylpyrrole unit were synthesized from 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polymers had inherent viscosities in the 0.20–0.65 dL/g range and were practically amorphous as shown by the X-ray diffraction studies. All the polyimides except for polypyromellitimide were easily soluble in a wide range of organic solvents such as o-chlorophenol, pyridine, 1,3-dimethyl-2-imidazolidone, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone at room temperature. These polyimides had high glass transition temperatures of 302–359°C and exhibited 10% weight loss at temperatures above 510°C in nitrogen.  相似文献   

10.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

11.
Polyarylates containing a t-butyl pendant group were prepared from 5-t-butylisophthaloyl chloride and various bisphenols through the phase-transfer catalyzed two-phase polycondensation. The polyarylates having inherent viscosities up to 3.1 dL/g were obtained quantitatively. They were readily soluble in various solvents such as chloroform, m-cresol, and pyridine. Coloreless, transparent, and flexible films could be cast from the chloroform solutions of the polymers. The polyarylates had glass transition temperatures between 210 and 320°C, and did not lose weight below 350°C, with 10% weight loss being recorded at 395–450°C in air.  相似文献   

12.
New polyarylates and aromatic polyethers were synthesized from 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethylene, and aromatic dicarboxylic acid chlorides and aromatic dihalides, respectively. The polyarylates having inherent viscosities of 0.28–1.05 dL/g were synthesized by either the two-phase method or the high-temperature solution method. All the polymers were easily soluble in N-methyl-2-pyrrolidone, N,N-dimethylformamide, pyridine, m-cresol, 1,4-dioxane, and 1,1,2,2-tetrachloroethane. They have glass transition temperatures in the range of 217–250°C and showed no weight loss below 315°C in both air and nitrogen atmospheres. Aromatic polyethers with inherent viscosities of 0.85–1.21 dL/g were obtained by the polycondensation of 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethylene and aromatic difluorides in the presence of potassium carbonate. These polymers having glass transion temperatures of 193–220°C were also soluble in the aforementioned solvents and stable up to around 350deg;C in both atmospheres. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
New N-phenylated aromatic-aliphatic and all aromatic polyamides were prepared by the high-temperature solution polycondensation of 4,4′-dianilinobiphenyl with both aliphatic (methylene chain lengths of 6–11) and aromatic dicarboxylic acid chlorides. All of the aromatic-aliphatic polyamides and the wholly aromatic polyamides exhibited an amorphous nature and good solubility in amide-type and chlorinated hydrocarbon solvents, except for those aromatic polyamides containing p-oriented phenylene or biphenylylene linkages in the backbone; the latter were crystalline and insoluble in organic solvents except m-cresol. The N-phenylated aromatic-aliphatic polyamides and aromatic polyamides had glass transition temperatures in the range of 79–116°C and 207–255°C, respectively, and all the polymers were thermally stable with decomposition temperatures above 400°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2193–2200, 1998  相似文献   

14.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

15.
New 1,4‐naphthyl and 2,6‐naphthyl‐containing polyarylates having inherent viscosities up to 1.28 dL/g were synthesized by the high‐temperature solution polycondensation from the acid chloride of 1,4‐bis(4‐carboxyphenoxy)naphthyl or 2,6‐bis(4‐carboxyphenoxy)naphthyl and various bisphenols. Most of the resulting polyarylates showed amorphous characteristics and were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), o‐chlorophenol, and chloroform. Transparent, flexible, and colorless films of these polymers could be cast from the DMAc solutions. Their cast films had tensile strengths ranging from 54.9 to 84.2 MPa, elongations at break from 5.3% to 19.0%, and initial modulus from 2.0 to 2.8 GPa. These polymers had glass transition temperatures in the range of 172–280°C and began to lose weight around 400°C, with 10% weight loss being recorded at about 450°C in air. Dynamic mechanical analysis (DMA) reveals that the polyarylates containing isopropylidene linkages have three transitions on the temperature scale between −100 and 300°C. However, only two transitions were observed in the other polyarylates without isoproylidene linkage. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 645–652, 1999  相似文献   

16.
A new tetraphenylated heterocylic diol, 2,5-bis(4-hydroxyphenyl)-3,4-diphenylpyrrole, was synthesized in three steps starting from 4-methoxydeoxybenzoin. The tetraphenylpyrrole-containing polyarylates having inherent viscosities of 0.28–0.88 dL/g were prepared from the diol and various aromatic dicarboxylic acid chlorides by both phase transfer catalyzed two-phase polycondensation and high temperature solution polymerization methods. All the polyarylates were semi-crystalline, and were readily soluble in a variety of solvents including N-methyl-2-pyrrolidone, m cresol, pyridine, and 1,4-dioxane. These polymers had glass transition temperatures in the range of 223–279°C, with no weight loss below 400°C in both air and nitrogen atmospheres. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Four series of poly(o-hydroxy amide)s were prepared by the low-temperature solution polycondensation of the bis(ether benzoyl chloride)s extended from hydroquinone and its methyl-, tert-butyl-, or phenyl-substituted derivatives with three bis(o-aminophenol)s. Most of the poly(o-hydroxy amide)s displayed an amorphous nature, were readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), and could be solution-cast into flexible and tough films. These poly(o-hydroxy amide)s had glass transition temperatures (Tg) in the range of 152–185°C and could be thermally cyclodehydrated into the corresponding polybenzoxazoles approximately in the region of 200–400°C, as evidenced by the DSC thermograms. The thermally converted benzoxazole polymers exhibited Tgs in the range of 215–247°C and did not show significant weight loss before 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2129–2136, 1999  相似文献   

18.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

19.
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009  相似文献   

20.
New soluble aromatic polyazomethines with inherent viscosities of 0.4–0.8 dL/g were prepared by the solution polycondensation of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene, bis(4-aminophenyl) ether, and aromatic dialdehydes in o-chlorophenol at 20°C. The copolyazomethines are generally soluble in chlorinated hydrocarbons, amide-type or phenolic solvents. The thermal stability of the polymers, which showed no weight loss up to 400°C in both air and nitrogen atmospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号