首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly[oxy(ethylthiomethyl)ethylene] (ETE) was prepared from poly[oxy (chloromethyl)ethylene] (CE) by reaction with sodium ethanethiolate. Sulfoxide and sulfone analogues were synthesized by oxidation of the poly[oxy(ethylthiomethyl)ethylene]. By changing the chloromethyl/sodium ethanethiolate ratio, poly[oxy (chloromethyl)ethylene-co-oxy(ethylthiomethyl)ethylene] (CE-ETEs) were easily made. Poly[oxy(ethylsulfinylmethyl)ethylene] (ESXE), poly[oxy(chloromethyl)ethylene-co-oxy(ethylsulfinylmethyl)ethylene] (CE-ESXEs), poly[oxy(ethylsulfonylmethyl)ethylene] (ESE), and poly[oxy(chloromethyl)ethylene-co-oxy(ethylsulfonylmethyl)ethylene] (CE-ESEs) were obtained by oxidation of ETE or CE-ETEs. There was little if any chain degradation. The (co)polymer structures were confirmed by FTIR and 1H-NMR spectroscopic studies. Their thermal properties were studied by DSC and TGA. Tgs of ETE, ESXE, and ESE were -57, 36, and 57°C, respectively, and Td,os (initial decomposition temperature, TGA) were 331, 198, and 308°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 793–801, 1998  相似文献   

2.
This article explores the synthesis of a novel methacrylic macromonomer with an amphiphilic character derived from poly(ethylene glycol) tert‐octylphenyl ether (MT) and its respective homopolymer. To know their reactivity in radical copolymerization reactions with methyl methacrylate (MMA), a model monomer (MTm) was synthesized to determine the reactivity ratios and compare them with the low molar fractions of copolymers of MT with MMA because they were difficult to isolate. They were rMTm = 0.97 and rMMA = 0.95. The compositional diagrams when representing the weight fraction of MT and MTm in the feed and the copolymer suggested that a clear correlation exists between the experimental points of the model monomer MTm and the macromonomer MT ones, suggesting that the length of the side poly(ethylene oxide) chain does not affect the reactivity of the methacrylic double bond in the prepared monomers for this type of polymerization reaction. The reactivity ratios of the copolymers have a tendency for the formation of random or Bernoullian copolymers. The glass‐transition temperatures (Tg's) of the prepared copolymers were determined by differential scanning calorimetry, deviated from the Fox equation, and discussed on the basis of treatments that consider the influence of the monomeric units along the copolymer chains, determining the Tg of the corresponding alternating dyads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1641–1649, 2003  相似文献   

3.
[(6‐Heptylsulfonyl)hexylthio]methyl‐substituted poly(oxyethylene) bearing a very polar sulfone group in the middle of the alkyl side chain was successfully synthesized by the reaction of poly[oxy(chloromethyl)ethylene] and (6‐heptylsulfonyl)hexyl thioacetate with sodium ethoxide in N,N‐dimethylacetamide. The ordered phase of the polymer was studied using X‐ray diffraction, differential scanning calorimetry, and IR spectroscopy. The polymer was found to be liquid crystalline, although not having any conventional mesogenic group. It was suggested that the highly polar sulfone group in the side chain induces the self‐assembly of the liquid crystalline phase.  相似文献   

4.
Melt blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate (PVAc) were prepared andstudied by Torsional Pendulum Analysis (TPA) and Fourier Transform Infrared (FTIR). Two glasstransitions were found in these blends. The lower T_g corresponds to the segmental motion in thepure PEO. The dependence of the position and broadness of the higher T_g on composition of theblends indicates that the two components are compatible in the amorphous phase with micro-hetero-geneity. These T_g values observed from mixed PVAc/PEO phase are much higher than that calculatedfrom Fox equation. The comparison of the blends quenched and annealed from melt implies thatPVAc mixed with PEO at the segmental level on molten state and the deviation of T_g values fromFox equation could be due to variation of the blend's composition by crystallization of part of thePEO component. Further indication that the blends are compatible down to the level of chain segments and thatthere are specific interactions between PVAc and PEO molecules comes from the analysis of FTIRspectra of the blends and the solution of PVA in diethylene glycol dimethyl ether.  相似文献   

5.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

6.
Copolymers of methyl methacrylate (MMA) with 2,3,5,6‐tetrafluorophenyl methacrylate (TFPMA), pentafluorophenyl methacrylate (PFPMA), and 4‐trifluoromethyl‐2,3,5,6‐tetrafluorophenyl methacrylate (TFMPMA) were investigated. All the three systems showed a random copolymerization character. The composition, glass transition temperature (Tg), and refractive index of the copolymers obtained were studied. Tgs of TFPMA/MMA and PFPMA/MMA copolymers were found to deviate positively from the Gordon–Taylor equation. However, Tgs of TFMPMA/MMA copolymers were well fit with the Gordon–Taylor equation. These results indicated the existence of interaction between MMA and either TFPMA or PFPMA units in copolymers. This interaction resulted in the enhancement of the Tg of MMA polymers through the copolymerization with TFPMA and PFPMA. The refractive index and the light transmittance of copolymers were close to those of PMMA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

8.
A functionalized cyclic carbonate monomer containing a cinnamate moiety, 5‐methyl‐5‐cinnamoyloxymethyl‐1,3‐dioxan‐2‐one (MC), was prepared for the first time with 1,1,1‐tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L ‐lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester‐carbonate). The results indicated that the copolymers displayed a single glass transition temperature (Tg) and the Tg decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo‐crosslinking of the cinnamate‐carrying copolymer was also demonstrated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 161–169, 2009  相似文献   

9.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

10.
Polymer electrolytes which are adhesive, transparent, and stable to atmospheric moisture have been prepared by blending poly(methyl methacrylate)-g-poly(ethylene glycol) with poly(ethylene glycol)/LiCF3 SO3 complexes. The maximum ionic conductivities at room temperature were measured to be in the range of 10−4 to 10−5 s cm−1. The clarity of the sample was improved as the graft degree increased for all the samples studied. The graft degree of poly(methyl methacrylate)-g-poly(ethylene glycol) was found to be important for the compatibility between the poly(methyl methacrylate) segments in poly(methyl methacrylate)-g-poly(ethylene glycol) and the added poly(ethylene glycol), and consequently, for the ion conductivity of the polymer electrolyte. These properties make them promising candidates for polymer electrolytes in electrochromic devices. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Copolymers of styrene with vinylphenyl trifluoromethyl carbinol, p-vinylphenyl trifluoromethyl carbinol, vinylphenyl hexafluorodimethyl carbinol, and p-vinylphenol are conditionally compatible with poly(ethylene oxide), depending on their composition and blending ratios, whereas copolymers of styrene and vinylphenyl methyl carbinol are much less compatible with poly(ethylene oxide), as determined by Tg criteria and differential scanning calorimetry. The crystallinity of poly(ethylene oxide) is changed in the copolymer/poly(ethylene oxide) blends, as indicated by depressions of the poly(ethylene oxide) melting point. Hydrogen-bond formation has been studied in two selected blends by infrared (IR) spectroscopy. Hydrogen bonding dissociation and reassociation as a function of temperature are reported. The conformation changes of poly(ethylene oxide) in the blends, the interaction between copolymer and poly(ethylene oxide) as well as in the reference blend, polystyrene/poly(ethylene oxide), are also investigated.  相似文献   

12.
New ether dimer (ED‐Eh) and diester (EHDE) derivatives of α‐(hydroxymethyl)acrylate, each having two 2‐ethylhexyl side chains, and an amine‐linked di(2‐ethylhexyl)acrylate (AL‐Eh), having three 2‐ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high‐molecular–weight polymers. Cyclopolymer formation of ED‐Eh and AL‐Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED‐Eh, EHDE, and AL‐Eh with methyl methacrylate (MMA) showed significant Tg decreases over poly(methyl methacrylate) (PMMA) due to 2‐ethylhexyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of 2‐ethylhexyl methacrylate, ED‐Eh, EHDE, and AL‐Eh with MMA revealed that the impacts of these monomers on depression of Tg's are identical with respect to the total concentration of the pendent groups. This is consistent with an earlier study involving copolymers of monomers comprising one and two octadecyl side groups with MMA. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the 2‐ethylhexyl pendent groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2302–2310, 2010  相似文献   

13.
Statistical copolymers of 2-vinylpyridine (VP) with oligo(ethylene glycol) methyl ether methacrylates of two different molecular weights (300 g/mol (OEGMA300) and 1100 g/mol (OEGMA1100)), were prepared by free radical polymerization. The reactivity ratios of these two sets of monomers were estimated using the Finemann–Ross, the inverted Finemann–Ross and the Kelen–Tüdos graphical methods. Structural parameters of the copolymers were obtained by calculating the dyad monomer sequence fractions and the mean sequence length. The effect of the length of the oligo(ethylene glycol) group on the copolymer structure is discussed. The glass-transition temperature (Tg) values of the VP copolymers with OEGMA300 were measured and examined in the frame of several theoretical equations, allowing the prediction of these Tg values. The copolymers of VP with OEGMA1100 exhibited the characteristic melting endotherm, due to the crystallinity of the methacrylate sequences and glass transition temperatures attributed to the PVP sequences.  相似文献   

14.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

15.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

16.
The effect of butyl acrylate (BA), divinyl benzene (DVB) and vinyltrimethoxysilane (TMVS) on the thermal properties of poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) was investigated. Glass transition temperature (Tg), melting temperature (Tm) and specific heat capacity of the copolymers were investigated using Differential Scanning Calorimetry. Thermal stability of the copolymers which is associated with the degradation temperature (Td) was studied by Thermogravimetric Analysis. Polyacrylates with Tg ranges between -19°Cand 19°C were obtained. With the incorporation of >7 wt% of DVB, the Tg of the copolymer increases from about ?17°C to ?10°C even though they have not undergone UV irradiation. Gel content results prove that crosslinking has occurred in the copolymers. With increasing amount of TMVS from 0 wt% to 7 wt%, the Tm of the copolymers prepared at acidic pH is about 40-60°C higher than that at the alkaline pH. However, the addition of TMVS gives no significant effect to the Tg and Td of the copolymer films. The thermal stability of the copolymer has improved with increasing amount of BA and DVB, with DVB being more effective. The highest Td of 425°C with 8% of DVB has been obtained. Consequently, a polyacrylate copolymer with a Tg of about ?13°C, a Tm of 170 °C and a Td of about 424°C has been successfully synthesized. Hence, the soft polyacrylate with its relatively high Tm and Td could serve as a superb material especially to be applied in the areas that require high melting temperature and good thermal stability.  相似文献   

17.
A new soluble terephthaloyl oligoperoxide (OTP) was synthesized by the reaction of terephthaloyl peroxide and 2,5‐dimethyl 2,5‐dihydroperoxy hexane. Thermal polymerization of vinyl monomers (styrene, methyl methacrylate) with OTP yielded poly(styrene peroxide) (PS‐P) and poly(methyl methacrylate peroxide) (PMMA‐P) which are used in the grafting reactions onto medium chain length unsaturated bacterial polyester obtained from soybean oily acids with Pseudomonas oleovorans poly(3‐hydroxy alkanoate), (PHA). PS‐g‐PHA and PMMA‐g‐PHA graft copolymers isolated from related homopolymers were characterizated by 1H NMR spectrometry, FT‐IR spectroscopy, thermal analysis and gel permeation chromatographic (GPC) techniques. Swelling measurement of the crosslinked graft copolymers were also measured to calculate qv values.  相似文献   

18.
The preparation of five samples of poly(methyl methacrylate) covering a wide range of tacticity and their electron irradiation to produce series of varying molecular weight are described. The glass transition temperature Tg of each polymer was determined by DTA techniques. Plots of Tg and the reciprocal of the molecular weight are well fitted in every case by a straight line. The data are also fitted to the Gibbs-DiMarzio theory and the values of the energy and free-volume parameters obtained are discussed. A method of estimating Tg of pure syndiotactic poly(methyl methacrylate) by extrapolation is presented, the value obtained being 160°C.  相似文献   

19.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
alt‐Copoly[1,9‐decaphenylpentasiloxanylene/1,3‐bis(ethylene)tetramethyldisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,5‐bis(ethylene)hexamethyltrisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,7‐bis(ethylene)octamethyltetrasiloxanylene], and alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,9‐bis(ethylene)decamethylpentasiloxanylene] were synthesized by Pt‐catalyzed hydrosilylation reactions of 1,9 divinyldecaphenylpentasiloxanes with a series of oligodimethylsiloxanes. The molecular weights of these copolymers were determined by gel permeation chromatography. Their glass‐transition temperatures (Tg's) were obtained by differential scanning calorimetry. The thermal stabilities of the copolymers were measured by thermogravimetric analysis. The structures of the copolymers were verified by 1H, 13C, and 29Si NMR as well as IR and UV spectroscopy. The copolymers displayed high thermal stabilities and a single Tg, indicating that phase separation between the two short blocks did not occur. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6146–6152, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号