首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of new polyamides 3 were synthesized by direct polycondensation of the 1,6-bis[4-(4-aminophenoxy)phenyl]diamantane (1) with various dicarboxylic acids. The polyamides had inherent viscosities of 0.45–1.90 dL/g and number-average molecular weights (Mn) of 24,000–110,000. Dynamic mechanical analysis (DMA) reveals that polymers 3 have two relaxations on the temperature scale between −100 and 400°C. Their α relaxations occurred at high temperatures, ranging from 338 to 389°C. Moreover, these polymers remained quite stable at high temperatures and maintained good mechanical properties (G′ = ca. 108 Pa) up to temperatures close to the main transition markedly exceeding 350°C. Due to the bulky diamantane elements and the flexible ether segments, the polymers 3 were amorphous and soluble in a number of organic solvents such as pyridine, N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc). The polyamides 3 have tensile strengths of 56.7–90.2 MPa, elongation to breakage values of 7.5–27.7%, and initial moduli of 1.8–2.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2185–2192, 1998  相似文献   

2.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

3.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

4.
This work synthesized a series of new polyamides by direct polycondensation of 1,3-bis[4-(4-carboxyphenoxy)phenyl]adamantane ( I ) with various diamines. The diacid I was synthesized from 1,3-bis(4-hydroxyphenyl)adamantane in two steps. Polyamides III were soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and pyridine. The polyamides had medium inherent viscosities of 0.30–0.55 dL/g and number-average molecular weights (Mn) of 22,000–36,000. The polyamides III a and III b had tensile strengths of 59.8 and 77.5 MPa, elongation to breakage values of 5.8 and 7.6%, and initial moduli of 1.9 and 1.8 GPa, respectively. Their glass transition temperatures were found to be 219–295°C by means of differential scanning calorimetry (DSC). Dynamic mechanical analysis (DMA) reveals that the incorporation of rigid and bulky diamantane into polyamides III a and III b leads to high glass transition temperatures (Tgs), at 299 and 286°C, respectively. The decomposition temperatures of polyamides III at a 5% weight loss ranged from 388 to 416°C in air and from 408 to 435°C in N2 atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 785–792, 1998  相似文献   

5.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

6.
A series of new aromatic polyamides having pendent naphthoxy groups were synthesized by the triphenyl phosphite‐activated polycondensation of (2‐naphthoxy)terephthalic acid (NOTPA) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The diacid monomer NOTPA was prepared from the nitro displacement of dimethyl 2‐nitroterephthalate with the potassium naphthoxide of β‐naphthol, followed by base‐induced ester hydrolysis. All the resulting polymers were noncrystalline and readily soluble in aprotic polar solvents such as NMP and N,N‐dimethylacetamide. Almost all the polymers could be solution‐cast to tough, creasable amorphous films with good mechanical properties, the values of tensile strengths ranging from 90 to 124 MPa with initial moduli ranging from 1.72 to 2.51 GPa. Except for two examples, all the other polyamides displayed discernible glass transitions between 189 and 248 °C in the differential scanning calorimetric traces. These polyamides showed insignificant decomposition below 400 °C in nitrogen or air. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1781–1789, 2002  相似文献   

7.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

8.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   

9.
N-Phenyl-3,3-Bis[4-(p-aminophenoxy)phenyl] phthalimidine ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of N-phenyl-3,3-bis(4-hydroxyphenyl) phthalimidine with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.55–1.64 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone (NMP). Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 293–319°C and 10% weight loss occurred up to 480°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening polyaddition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP, m-cresol, and o-chlorophenol. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
1,3-Diaminoadamantane (I) was used as a monomer with various aromatic dicarboxylic acyl chlorides and dianhydrides to synthesize polyamides and polyimides, respectively. Polyamides having inherent viscosities of 0.10–0.27 dL/g were prepared by low-temperature solution polycondensation. The polyamides were soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), pyridine, dioxane, and nitrobenzene. These polyamides had glass transition temperatures in the 179–187°C range and 5% weight loss temperatures occurred at up to 354°C. Polyimides based on diamine I and various aromatic dianhydrides were synthesized by the two-stage procedure that included ring-opening to form polyamic acids, followed by thermal conversion to polyimides. The polyamic acids had inherent viscosities of 0.14–0.38 dL/g. The glass transition temperature of these polyimides were in the 245–303°C range and showed almost no weight loss up to 350°C under air and nitrogen atmosphere. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
9,9-Bis[4-(p-aminophenoxy)phenyl]fluorene ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of 9,9-bis(4-hydroxyphenyl)fluorene with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.73–1.39 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone. Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 283–309°C and 10% weight loss occurred up to 460°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening poly-addition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. The poly(amic acid)s had inherent viscosities of 0.62–1.78 dL/g, depending on the dianhydrides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Polyamides were synthesized by the direct polycondensation of aromatic diamines containing 4,5-imidazolediyl structure with aliphatic dicarboxylic acids, and the metal adhesive properties of these polymaides were studied. The inherent viscosity of the obtained polyamides was in the range of 0.28 to 0.71 dl g?1. The decomposition temperatures (T ds) of the obtained polyamides were above 400°C and their glass transition temperatures (T gs) were from 168 to 198°C. These polyamides also showed good solubilities in polar solvents, such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and formic acid. A standard tensile test was performed in order to examine the adhesive property of these polyamides for stainless steel, and the obtained polyamides showed excellent tensile strengths, e.g. polyamide P1s derived from 4,5-di(4-aminophenyl)imidazole (DAPI) and sebasic acid had values of 212 kgf cm?2 at 20°C, 183 kgf cm?2 at 120°C, and 133 kgf cm?2 at 180°C. A commercially available epoxy resin was also examined, and showed great tensile strength at 20°C. However, the strength of the epoxy resin was found to decrease with increasing temperature, whereas polyamide having 4,5-imidazolediyl structure retains its strength at temperatures of up to 180°C. In addition, the polyamide was also derived from 4,4″-diamino-o-terphenyl(DAOT) (rather than DAPI) and sebasic acid, and the properties of the polyamides derived, respectively from DAPI and DAOT were compared.  相似文献   

14.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

15.
Two ether-sulfone-dicarboxylic acids, 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]dibenzoic acid (Me- III ) and 4,4′-[sulfonylbis(1,4-phenylene)dioxy]-dibenzoic acid ( III ), were prepared by the fluorodisplacement of 4,4′-sulfonylbis(2,6-dimethylphenol) and 4,4′-sulfonyldiphenol with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of intermediate dinitriles. Using triphenyl phosphite (TPP) and pyridine as condensing agents, aromatic polyamides containing ether and sulfone links were prepared by the direct polycondensation of the dicarboxylic acids with various aromatic diamines in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The inherent viscosities of the resulting polymers were above 0.4 dL/g and up to 1.01 dL/g. Most of the polyamides were readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough and transparent films by solution-casting. Most of the polymers showed distinct glass transition on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 212–272°C. The methyl-substituted polyamides showed slightly higher Tgs than the corresponding unsubstituted ones. The results of the thermogravimetry analysis (TGA) revealed that all the polyamides showed no significant weight loss before 400°C, and the methyl-substituted polymers showed lower initial decomposition temperatures than the unsubstituted ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2421–2429, 1997  相似文献   

16.
Four aryl dichlorides containing secondary amide structural units as monomers were synthesized from substituted piperazines and chlorobenzoyl chlorides. Polyamides were prepared by the nickel-catalyzed coupling polymerization of these monomers. Polymerizations were carried out in N-methyl-2-pyrrolidinone (NMP) in the presence of nickel chloride, zinc, triphenylphosphine, and bipyridine, and resulted in polyamides with inherent viscosities up to 0.38 dL/g under mild conditions. The structure of polymer was determined by IR and 13C-NMR spectroscopies. The polyamide, poly[4,4′-biphenyldicarbonyl (2,5-dimethylpiperazine)] 6d , was readily soluble in dipolar aprotic solvents and chloroform. Thermogravimetry of polyamides, poly[(4,4′-biphenyldicarbonyl piperazine)]s 6 , showed 10% weight loss at around 425 and 450°C in air and under nitrogen, respectively. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
5,5-Bis[4-(4-carboxyphenoxy)phenyl]hexahydro-4,7-methanoindan ( 3a ) and 5,5-bis[4-(4-aminophenoxy)phenyl]hexahydro-4,7-methanoindan ( 3b ) were prepared in two main steps starting from the aromatic nucleophilic halogen-displacement of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 5,5-bis(4-hydroxyphenyl)hexahydro-4,7-methanoindan in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides having polyalicyclic cardo units were directly polycondensated from dicarboxylic acid 3a with various aromatic diamines, or from diamine 3b with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. High molecular weight polyamides with inherent viscosities between 0.73 and 1.44 dL/g were obtained. All polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and afforded transparent, flexible, and tough films by solution casting. The glass-transition temperatures (Tg) of these aromatic polyamides were in the range of 219–253°C by DSC, and the 10% weight loss temperatures in nitrogen and air were above 467 and 465°C, respectively. A comparative study of some polyamides with an isomeric repeat unit is also presented. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4510–4520, 1999  相似文献   

18.
3,3-Bis[4-(4-aminophenoxy)phenyl]phthalide ( II ) was used as a monomer with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of phenolphthalein with p-chloronitrobenzene in the presence of K2CO3. Polyamides IV a-g having inherent viscosities of 0.77–2.46 dL/g were prepared by the direct polycondensation of diamine II with diacids III a-g using triphenyl phosphite and pyridine as condensing agents. The polyamides were readily soluble in a variety of solvents such as N, N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), and N-methyl-2-pyrrolidinone (NMP) and afforded transparent and flexible films from the polymer solutions. These polymers had glass transition temperatures (Tgs) in the 227–307°C range and 10% weight loss temperatures occurred up to 450°C. Polyimides VI a-e based on diamine II and various aromatic dianhydrides V a-e were synthesized by the two-stage procedure that included ring-opening, followed by thermal or chemical conversion to polyimides. Most of the polyimides obtained by chemical cyclodehydration procedure were found to soluble in DMF, NMP, o-chlorophenol, and m-cresol. The Tgs of these polyimides were in the 260–328°C range and showed almost no weight loss up to 500°C under air and nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

20.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号