首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass transition temperatures (Tg) of nonstoichiometric epoxy-amine networks based on the diglycidylether of bisphenol A (DGEBA), are analyzed in terms of the network structure. In most cases reasonable predictions of Tg can be made using an empirical equation reported by L. E. Nielsen together with the experimental Tg value of the stoichiometric network and statistical calculations of the concentration of elastic chains. It is stated that in these rigid networks the concentration of elastic chains is the main structural factor associated to the variations of Tg with stoichiometry. For flexible networks based on the diglycidylether of butanediol (DGEBD), the effect of elastic chains on the Tg value is much less significant.  相似文献   

2.
The reticulation process of an epoxy resin using an amine as a cure agent was studied at different temperatures and concentrations of the cure agent with dynamic mechanical thermal analysis. The study was performed under both isothermal and nonisothermal conditions, and a temperature–time–transformation diagram was obtained. The measurements from the two modes gave similar results, although the nonisothermal mode required fewer experiments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1965–1977, 2003  相似文献   

3.
Enthalpy relaxation of epoxy–diamine thermosets of different crosslink lengths (CLL) has been studied by DSC. The epoxy resins based on diglycidyl ether of bisphenol A were cured with ethylenediamine (FEDA), and diamines of polyoxypropylene of 2.6 and 5.6 oxypropylene units, named FJ230 and FJ400, respectively. As was expected, increasing the CLL decreases the glass transition temperature Tg from 121°C (FEDA) to 47°C (FJ400). Aging experiments at Tg − 20 K for each resin permit the determination of the enthalpy loss, the relaxation rate per decade (βH), and the nonlinearity parameter, x. The apparent activation energy, Δh*, and the nonexponentiality parameter β are found for each resin from intrinsic cycles in which the sample is heated at 10 K min−1 following cooling at various rates through the glass transition region. An increase of CLL is related to an increase of βH, and of the nonlinearity parameter. In agreement with the general trend for thermoplastic polymers, the increase of the parameter x is correlated with a decrease of Δh* and with an increase in the nonexponentiality parameter. Application of the Adam–Gibbs (AG) theory reveals that the parameters B and Tf/T2 increase with CLL, corresponding to a decrease of the nonlinear behavior of the glassy epoxies. However, the T2 values calculated in this way appear unrealistic, and the alternative assumption that T2 = Tg −51.6 K, making use of the “universal” WLF constant, leads to a much smaller variation of B, which nevertheless still increases with CLL. From a consideration of the minimum number of configurations required for a cooperative rearrangement, it is argued that the elementary activation energy Δμ increases, and the minimum size of the cooperatively rearranging region decreases as CLL increases. This is consistent with the relaxation process becoming more cooperative as the CLL decreases, as is suggested by the decrease in the value of β. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 456–468, 2000  相似文献   

4.
Kinetic studies established that the monomethylation of a primary amine leads to significantly higher reaction rates with glycidyl ethers. The relative rates for approximately 25 amines were determined in an alcohol solvent under pseudo‐first‐order conditions (excess epoxy). The rates were referenced to aniline. For the aliphatic amines, reactivity consistently increased upon going from a primary amine to the corresponding N‐methyl secondary amine. This acceleration effect was not seen for aniline. The enhanced reactivity was also seen in curing systems, both with pure methylated amine curing agents and with complex mixtures obtained from the partial methylation of polyamines. Economically viable partially methylated amine curing agents were obtained by the reductive alkylation of commercial polyamines with formaldehyde and by the reaction of monomethylamine with 3‐(N‐methylamino)propionitrile in the presence of hydrogen and a hydrogenation catalyst. Although actual cure performance is based on a complex combination of several factors, the acceleration due to monomethylation could be a useful tool for enhancing amine/epoxy curing reactions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 921–930, 2000  相似文献   

5.
Epoxy–amine networks are known to be homogeneous. However, using new analysis tools that allow the observation scale to be reduced to a nanometric level, some authors have stated the opposite. In this work, the network morphology has been studied with atomic force microscopy in the tapping mode as a function of the hardener nature and the stoichiometry of the reactive blend. A very homogeneous epoxy network topography, similar to that of an amorphous thermoplastic, has been obtained. For comparison, a truly heterogeneous network topography, like that of unsaturated thermosets cured by free‐radical mechanisms, has been imaged. For the observation of surfaces on a scale smaller than a nanometer, caution must be taken:(1) the tips must be freshly cleaned so that distortion on the image is prevented and (2) the surfaces must be very flat so that the phase contrast is not influenced significantly by differences in the sample topography. This works gives guidelines on using atomic force microscopy in the tapping mode for epoxy–amine network characterization and discusses epoxy–amine network homogeneity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2422–2432, 2003  相似文献   

6.
Antibacterial hydrogels containing quaternary ammonium (QA) groups were prepared via a facile thiol‐ene “click” reaction using multifunctional poly(ethylene glycol) (PEG). The multifunctional PEG polymers were prepared by an epoxy‐amine ring opening reaction. The chemical and physical properties of the hydrogels could be tuned with different crosslinking structures and crosslinking densities. The antibacterial hydrogel structures prepared from PEG Pendant QA were less well‐defined than those from PEG Chain‐End QA. Furthermore, functionalization of the PEG‐type hydrogels with QA groups produced strong antibacterial abilities against Staphylococcus aureus, and therefore has the potential to be used as an anti‐infective material for biomedical devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 656–667  相似文献   

7.
A bifunctional cyclic five‐membered dithiocarbonate (DTC), having a bisphenol A structure, was found to be an effective accelerator for a epoxy–amine curing system comprised of bisphenol A diglycidyl ether and amine‐terminated polypropylene glycol. The acceleration effect was evaluated by monitoring the time‐dependence of the storage modulus of the reaction mixture with a dynamic mechanical analyzer. The reactions involved in the curing system were investigated in detail by performing a series of model reactions using the corresponding monofunctional monomers. This investigation revealed that (1) DTC reacted with amine rapidly, (2) the reaction afforded the corresponding adduct having a thiourethane and thiol moieties, and (3) the thiol reacted rapidly with epoxide. The thiourethane moiety incorporated into the resulting adduct effectively catalyzed the reaction of epoxide and amine, and this catalysis was the predominant mechanism for the acceleration effect arisen by the addition of DTC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4606–4611, 2007  相似文献   

8.
We have investigated epoxies based on the diglycidyl ether of bisphenol A (DGEBA) cured with 2-ethyl-4-methylimidazole (EMI-24) in the presence of the nonionic surfactant Triton X-100. A goal was to determine if the viscoelastic properties of the epoxy–surfactant system differed when prepared in bulk form, as opposed to being cast as a thin film on the surface of E-glass cloth. Such a combination of materials has generated great interest for potential use in the construction of laminated circuit boards. Using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and atomic force microscopy (AFM), it was determined that the surfactant acts as a plasticizer and is miscible with the epoxy system in concentrations up to 15% by weight. The glass transition temperature (Tg) depression of the epoxy due to the surfactant was accurately described by the Fox equation. DMA master curves were constructed in the frequency domain. The temperature dependence of the shift factors was used to determine the fragility of each of the samples studied. It was found that the fragility (cooperativity) of the epoxy decreased as the concentration of surfactant increased, presumably due to a reduction of intermolecular constraints. The fragility of the combined epoxy–surfactant system increased when cast on the surface of the E-glass cloth. Results for our model epoxy–surfactant resin were in excellent agreement with those obtained using a commercially available aqueous waterborne epoxy resin. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2781–2792, 1998  相似文献   

9.
A comprehensive picture on the mechanism of the epoxy‐phenol curing reactions is presented using the density functional theory B3LYP/ 6‐31G(d,p) and simplified physical molecular models to examine all possible reaction pathways. Phenol can act as its own promoter by using an addition phenol molecule to stabilize the transition states, and thus lower the rate‐limiting barriers by 27.0–48.9 kJ/mol. In the uncatalyzed reaction, an epoxy ring is opened by a phenol with an apparent barrier of about 129.6 kJ/mol. In catalyzed reaction, catalysts facilitate the epoxy ring opening prior to curing that lowers the apparent barriers by 48.9–50.6 kJ/mol. However, this can be competed in highly basic catalysts such as amine‐based catalysts, where catalysts are trapped in forms of hydrogen‐bonded complex with phenol. Our theoretical results predict the activation energy in the range of 79.0–80.7 kJ/mol in phosphine‐based catalyzed reactions, which agrees well with the reported experimental range of 54–86 kJ/mol. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Curing characteristics of o-cresol novolac epoxy resin modified by 4,4-diaminodiphenylmethane bismaleimide (DDM-BMI) using FTIR were investigated and the glass transition temperature was measured. With the addition of DDM as hardener, the relative curing reaction conversion of DDM-BMI increased with equivalent weight ratio [R1 = (equiv wt summation of epoxy and DDM-BMI)/equiv wt of DDM] and weight ratio of epoxy and DDM-BMI (R2 = wt of epoxy resin/wt of DDM-BMI). Using phenol novolac resin (PN) as hardener, the curing reaction conversion of DDM-BMI was hardly changed, but the variation of that in the epoxy resin was observed with R2 change. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The reactions of an epoxy prepolymer based on bisphenol A diglycidylether (DGEBA) with γ-aminopropyltriethoxysilane (γ-APS) are studied. The results of different techniques are compared: size exclusion chromatography, differential scanning calorimetry, chemical titration, and Fourier Transform Infrared absorption. Epoxy amine reactions are shown to be faster than the crosslinking reactions between alkoxysilane and hydroxy groups, and thus, can be studied seprately. The reactivity of the epoxy group in DGEBA is compared with that of phenylglycidylether (PGE). And the reactivity of the amine group of γ-APS is compared with that of hexylamine. The kinetic constants are calculated with a mechanism which takes into account both the catalytic and noncatalytic reactions. The ratio r = k2/k1 of the reactivity of the secondary to the primary amino-hydrogens was also determined. The values of r are 1.4 for hexylamine and 1.2 for γ-APS. The reactivity of the epoxy groups are the same for both PGE and DGEBA.  相似文献   

12.
13.
The glass transition temperatures Tg of butyl acrylate–methyl methacrylate copolymers obtained by free radical polymerization in 3 and 5 mol/L benzene solution have been measured using differential scanning calorimetry (DSC) and the values have been correlated using Johnston's equation with inter‐intramolecular copolymer structure. From the data calculated with copolymer prepared at low conversion, the variation of glass transition temperature with copolymer conversion has been theoretically predicted. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2512–2520, 1999  相似文献   

14.
Chain‐end free volume theory is extended for studying the glass‐transition temperature (Tg) as a function of conversion in hyperbranched polymers. Tg is found to have a non‐linear inverse relationship to the molecular weight for polymers obtained by self‐condensing vinyl polymerization (SCVP). During the monomer conversion process, Tg decreases with the increase in molecular weight (P) in the low conversion range, then levels off in the high conversion range.  相似文献   

15.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

16.
In this study, the effect of water addition on cure kinetics in an epoxy‐amine thermoset was investigated. Near FTIR spectra demonstrated that a small amount of water addition significantly accelerated the cure reaction in terms of epoxide conversion, with water acting as a catalyst for the reaction. Use of a modified mechanistic model allowed direct comparison of the effect of hydroxyl groups generated from water addition to those generated from the polymer chain. The comparison of those kinetic parameters shows that the two effects are very close, in which difference in the logarithmic value of the reaction constant is less than one order of magnitude over all the reaction conditions. The kinetic study also confirmed a strong negative substitution effect for this system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A comprehensive picture on the mechanism of the epoxy‐carboxylic acid curing reactions is presented using the density functional theory B3LYP/6‐31G(d,p) and simplified physical molecular models to examine all possible reaction pathways. Carboxylic acid can act as its own promoter by using the OH group of an additional acid molecule to stabilize the transition states, and thus lower the rate‐limiting barriers by 45 kJ/mol. For comparison, in the uncatalyzed reaction, an epoxy ring is opened by a phenol with an apparent barrier of about 107 kJ/mol. In catalyzed reaction, catalysts facilitate the epoxy ring opening prior to curing that lowers the apparent barriers by 35 kJ/mol. However, this can be competed in highly basic catalysts such as amine‐based catalysts, where catalysts can enhance the nucleophilicity of the acid by forming hydrogen‐bonded complex with it. Our theoretical results predict the activation energy in the range of 71 to 94 kJ/mol, which agrees well with the reported experimental range for catalyzed reactions. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
The enthalpy relaxation of an epoxy–anhydride resin was studied by physical aging and frequency‐dependence experiments with alternating differential scanning calorimetry (ADSC), which is a temperature‐modulated differential scanning calorimetry technique. The samples were aged at 80 °C, about 26 K below the glass‐transition temperature, for periods up to 3800 h and then scanned under the following modulation conditions: underlying heating rate of 1 K min−1, amplitude of 0.5 K, and period of 1 min. The enthalpy loss was calculated by the total heat‐flow signal, and its variation with the log (aging time) gives a relaxation rate (per decade), this value being in good agreement with that calculated by conventional DSC. The enthalpy loss was also analyzed in terms of the nonreversing heat flow, revealing that this property is not suitable for calculating enthalpy loss. The effect of aging on the modulus of the complex heat capacity, |Cp*|, is shown by a sharper variation on the low side of the glass transition and an increase in the inflexional slope of |Cp*|. Likewise, the phase angle also becomes sharper in the low‐temperature side of the relaxation. The area under the corrected out‐phase heat capacity remains fairly constant with aging. The dependence of the dynamic glass transition, measured at the midpoint of the variation of |Cp*|, on ln(frequency) allows one to determine an apparent activation energy, Δh*, which gives information about the temperature dependence of the relaxation times in equilibrium over a range close to the glass transition. The values of Δh*, determined from ADSC experiments in a range of frequencies between 4.2 and 33 mHz and at an amplitude of 0.5 K, and an underlying heating rate of 1 K min−1, were analyzed and compared with that obtained by conventional DSC from the dependence of the fictive temperature on the cooling rate. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2272–2284, 2000  相似文献   

19.
Summary: The glass transition temperatures of conducting composites, obtained by blending carbon nanotubes (CNTs) or polypyrrole (PPy) particles with epoxy resin, were investigated by using both differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). For both composites, dc and ac conductivity measurements revealed an electrical percolation threshold at which the glass transition temperature and mechanical modulus of the composites pass through a minimum.

DC conductivity, σdc, as a function of the conducting filler concentration of the CNT– (▪) and PPy– (○) epoxy resin composites.  相似文献   


20.
Effects of water on epoxy cure kinetics are investigated. Experimental tests show that absorbed water in an uncured bisphenol‐F/diethyl‐toluene‐diamine epoxy system causes an increase in cure rate at low degrees of cure and a decrease in cure rate at high degrees of cure. Molecular simulations of the same epoxy system indicate that the initial increase in cure rate is due to an increase in molecular self‐diffusion of the epoxy molecules in the presence of water. Effects of water on the glass transition temperature (Tg) of the crosslinked thermoset are also studied. Both experiments and simulations show that water decreases Tg. Both types of results indicate that Tg effects are small below 1% water by weight, but that Tg depression occurs much quickly with increasing water content above 1%. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1150–1159  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号