首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

2.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

3.
Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.  相似文献   

4.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The nonisothermal cold‐crystallization kinetics and subsequent melting behavior of poly(trimethylene terephthalate) (PTT) were investigated with differential scanning calorimetry. The Avrami, Tobin, and Ozawa equations were applied to describe the kinetics of the crystallization process. Both the Avrami and Tobin crystallization rate parameters increased with the heating rate. The Ozawa crystallization rate increased with the temperature. The ability of PTT to crystallize from the glassy state at a unit heating rate was determined with Ziabicki's kinetic crystallizability index, which was found to be about 0.89. The effective energy barrier describing the nonisothermal cold‐crystallization process of PTT was estimated by the differential isoconversional method of Friedman and was found to range between about 114.5 and 158.8 kJ mol?1. In its subsequent melting, PTT exhibited double‐melting behavior for heating rates lower than or equal to 10 °C min?1 and single‐melting behavior for heating rates greater than or equal to 12.5 °C min?1. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4151–4163, 2004  相似文献   

6.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

7.
Sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA40) and N,N‐dicyclohexylterephthalamide (NABW) are high effective nucleating agents for inducing the formation of α‐isotactic polypropylene (α‐iPP) and β‐iPP, respectively. The isothermal crystallization kinetics of iPP nucleated with nucleating agents NABW, NA40/NABW (weight ratio of NA40 to NABW is 1:1) and NA40 were investigated by differential scanning calorimetry (DSC) and Avrami equation was adopted to analyze the experimental data. The results show that the addition of NABW, NA40/NABW and NA40 can shorten crystallization half‐time (t1/2) and increase crystallization rate of iPP greatly. In these three nucleating agents, the α nucleating agent NA40 can shorten t1/2 of iPP by the largest extent, which indicates that it has the best nucleation effect. While iPP nucleated with NA40/NABW compounding nucleating agents has shorter t1/2 than iPP nucleated with NABW. The Avrami exponents of iPP and nucleated iPP are close to 3.0, which indicates that the addition of nucleating agents doesn't change the crystallization growth patterns of iPP under isothermal conditions and the crystal growth is heterogeneous three‐dimensional spherulitic growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 590–596, 2007  相似文献   

8.
Poly(β-benzyl-L-aspartate) (PBLA) is an unusual polypeptide, which is capable of going into four different conformations, namely, left-handed α helix, right-handed α helix, ω helix, and β pleated sheet. The present work is a complete study of normal modes and their dispersion in the unusual left-handed α form. A special feature of some of the dispersion curves is their tendency to bunch in the neighborhood of helix angle. This is attributed to the presence of strong intramolecular interactions. Crossing and repulsion between the dispersion curves is also observed. The N-deuterated analogue of PBLA has been studied to check the validity of assignments and force field (Urey Bradley). Specific heat has been obtained from dispersion curves via density of states. A comparative study of left-handed and right-handed forms is presented. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Inorganic–organic hybrids mediated by hydrogen‐bonding interactions involving silicon oxide network and poly(ε‐caprolactone) (PCL) were prepared via an in situ sol–gel process of tetraethoxysilane in the presence of PCL. Fourier transform infrared spectroscopy indicated that there were hydrogen‐bonding interactions between carbonyls of PCL and silanol hydroxyls that were formed by incomplete polycondensation in the sol–gel process. In terms of the frequency shift of the hydroxyl stretching vibration bands, it is concluded that the strength of the interassociation between PCL and silicon oxide networks is weaker than that of the self‐association in the control silica network. The phenomenon of equilibrium melting point depression was observed for the PCL/silica system. The hybridization of PCL with silica network causes a considerable increase in the overall crystallization rate and dramatically influences the mechanism of nucleation and growth of the PCL crystallization. The analysis of isothermal crystallization kinetic data according to the Hoffman‐Lauritzen theory shows that with increasing silica content in the hybrids, the surface energy of extremity surfaces increases dramatically for the hybrids. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2594–2603, 2005  相似文献   

10.
11.
The interpretation of the mechanical and dielectric β relaxations of poly(cyclohexyl acrylate) by the coupling scheme suggests that the dielectric relaxation process is more complex than the mechanical one, contrary to what occurs in the glass–rubber relaxation. The distribution of activation energies for the dielectric process, obtained from isochronal and isothermal loss curves, increases with temperature and frequencies. The determination of the distribution of the activation-free energy indicates a distribution of the activation entropy for both the mechanical and dielectric β process, suggesting that a distribution of preexponential factors in the Arrhenius equation also exists. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
用差示量热扫描热分析仪(DSC)测试了不同降温速率下聚2-吡咯烷酮(PPD)样品的温度-热焓曲线,样品黏均分子量为2.2×10~4,熔点为272℃。采用Jeziorny法、Ozawa法和莫志深法分析了PPD的非等温结晶动力学。结果表明,在给定降温速率范围内,Ozawa法不适用于描述PPD的非等温结晶动力学过程,Jeziorny法只适用于描述PPD的主结晶阶段,而莫志深法能很好地描述整个结晶过程。Jeziorny法处理结果表明,PPD主结晶阶段的Avrami指数(n)为1.68~1.78,晶体生长为准二维生长。莫志深法处理结果表明,在单位结晶时间里达到某一相对结晶度所需的降温速率随相对结晶度的增加而增大。用Kissinger方程求得PPD的非等温结晶活化能为-31.9kJ/mol。  相似文献   

13.
In this work, the nonisothermal crystallization and subsequent melting behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been studied. α‐phase NA 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The results show that the nonisothermal crystallization behaviors and crystalline structures of PP with compounded NAs are dependent on the composition of NAs. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency (NE) of TMB‐5 is much higher than that of DMDBS and PP crystallizes mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher NE than 0.2 wt % TMB5, and α‐phase is the main crystalline structure. The cooling rate is proved to be very important in controlling the nonisothermal crystallization behavior and the final crystalline structure of nucleated PP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1853–1867, 2008  相似文献   

14.
Specific interactions in blends of poly(ε-caprolactone) (PCL) and poly(styrene-co-acry-lonitrile) (SAN) were studied as a function of copolymer composition and blend ratio by using Fourier-transform infrared spectroscopy (FTIR). It was shown that miscibility occurred within a certain range of copolymer compositions because the presence of PCL reduced the thermodynamically unfavorable repulsion between styrene and acrylonitrile segments in the random copolymer. This effect was observed in terms of a shift to higher frequencies in the 700 cm-1 γ-CH out-of-plane deformation vibration absorption of styrene and in the approximately 2236 cm?1 C?N stretching frequency band in acrylonitrile segments. Specific intermolecular interactions between SAN and PCL were not observed in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Calcium malonate (Camt) is used to induce the β crystalline form in isotactic polypropylene (iPP) for the first time. The relative content of the β crystalline form (K value) increases markedly with the addition of Camt and attains the maximum value of 73.48% at 0.40% Camt. The amounts of bright and colorful β spherulites increase and the spherulitic sizes decrease with the increase in Camt contents. The tensile strength and the Izod notched impact strength of the nucleated iPP samples increase with the addition of Camt; in particular, the latter almost doubles at 0.40% Camt compared to that of the blank iPP sample. The β nucleation mechanism of Camt is analyzed by the dimensional lattice match criterion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The degradation of poly(3-hydroxybutyrate), P(3HB), was determined in two conditions namely, a non-aqueous condition of chloroform-methanol mixture in the presence of either one of the two following catalysts, 4-toluenesulphonic acid and imidazole, and secondly in an aqueous condition of increasing pH. From our study, a random chain scission of PHB occurred in the non-aqueous condition while the degradation of PHB in the presence of water occurred through surface hydrolysis with no change in the molecular weight. In the surface hydrolysis of the polymer, the rate was increased with higher pH values.  相似文献   

17.
Here, we report on the synthesis and different crystallization behavior of linear‐ and star‐ PCL's containing a photocleavable linker (5‐hydroxy‐2‐nitro benzaldehyde), modulated by photochemical switching. Basis is the attachment of a photocleavable moiety close to the star‐core of a three‐arm star poly(caprolactone), so that the crystallization behavior can be controlled via a photochemical stimulus. The polymerization of ε‐caprolactone using a trivalent photocleavable initiator and stannous octanoate catalyst resulted in the synthesis of different molecular weights of star‐shaped photocleavable polymers. Various techniques like 1H NMR and ESI‐TOF‐MS confirmed the successful synthesis of the star‐shaped polymers. Complete photocleavage is ensured via GPC, HPLC, and ESI‐TOF‐MS. DSC studies clearly indicated the enhancement in crystallinity after photocleavage of the star‐shaped poly(ε‐caprolactone)s. Hence, for the first time phototriggered crystallization behavior of PCL polymers is reported, where the confinement exerted by the star architecture is removed by photoirradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 642–649  相似文献   

18.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

19.
The crystallisation kinetics, melting behaviour and morphology, of bacterial poly(3-hydoxybutyrate) (PHB) have been investigated by using differential scanning calorimetry (DSC), step-scan DSC (SDSC), wide angle X-ray diffraction (WAXRD) and hot stage polarised optical microscopy (HSPOM). DSC imparted isothermal crystallisation thermal history. The subsequent melting behaviour revealed that all PHB materials experienced secondary crystallisation during heating and the extent of secondary crystallisation varied depending on the crystallisation temperature. PHB samples were found to exhibit double melting behaviour due to melting of SDSC scan-induced secondary crystals, while considerable secondary crystallisation or annealing took place under the modulated heating conditions. The overall melting behaviour was rationalised in terms of recrystallisation and/or annealing of crystals. Interestingly, the PHB materials analysed by SDSC showed a broad exotherm before the melting peak in the non-reversing curve and a multiple melting peak reversing curve, verifying that the melting-recrystallisation and remelting process was operative. HSOM studies supported the conclusions from DSC that the radial growth rate of the PHB spherulites was significantly varied upon the crystallisation conditions. One form of crystals was shown by WAXRD from isothermally crystallised PHB.  相似文献   

20.
Deuterium labeling of semi‐crystalline polymers can dramatically affect their crystallization behaviors. However, the influence of different labeled positions in a partially deuterated polymer on its crystallization is still far from understood. Here, we synthesized a series of selectively deuterated poly(ε‐caprolactones) (PCLs) through ring‐opening polymerization of ε‐caprolactone with controlled deuteration sites, including fully protiated (D0), fully deuterated (D10), tetra deuteration at the 3‐ and 7‐ caprolactone ring positions (D4) and hexa deuteration at the 4‐, 5‐, and 6‐ caprolactone ring positions (D6). All the PCLs showed a similar lamellar structure and parameters. Differential scanning calorimetry (DSC) analysis revealed that the equilibrium melting temperature T m 0 , melting temperature Tm , crystallization temperature Tc , and crystallization kinetics changed systemically with the deuterium content except for D4, which indicates that the presence of ? CD2? moieties on either side of ester group in the polymer chain combined with isotopic inhomogeneity could influence the chain packing. The nonmonotonic trend of Tm as a function of deuterium content could be attributed to the difference in a hydrogen‐bond like intermolecular interaction between different PCLs. Partially deuterated PCLs (D4 and D6) showed an Avrami index near 2. After analyzing the parameters at the same supercooling temperature ΔTc , the existence of two crystallization regimes of PCLs were detected. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 771–779  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号