首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-Phenyl-2-[m-(trimethylgermyl)phenyl]acetylene (m-Me3GeDPA) and 1-phenyl-2-[p-(trimethylgermyl)phenyl]acetylene (p-Me3GeDPA) polymerized with TaCl5–cocatalyst systems to provide in high yields new polymers having weight-average molecular weights over 1 × 106. Poly(m-Me3GeDPA) was a yellow solid, which completely dissolved in toluene, chloroform, etc., to form a tough film by solution casting. Poly(p-Me3GeDPA) was also a yellow solid and partly insoluble in any solvents. The onset temperatures of weight loss for these polymers in the thermogravimetric analysis in air were as high as ca. 400°C. The oxygen permeability coefficient of poly(m-Me3GeDPA) was 1100 barrers (25°C), which is about twice that of poly(dimethylsiloxane). © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Copolymerization of 1-[3,5-bis(trimethylsilyl)phenyl]-2-phenylacetylene (m,m-(Me3Si)2DPA) with other diphenylacetylene derivatives and their copolymer properties were investigated. Homopolymerization of m,m-(Me3Si)2DPA by TaCl5n-Bu4Sn (1:2) did not give the polymer due to steric hindrance. However, m,m-(Me3Si)2DPA copolymerized with diphenylacetylene (DPA), 1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene (p-Me3Si DPA), and 1-phenyl-2-[m-(trimethylsilyl)phenyl]acety-lene (m-Me3SiDPA) in the presence of TaCl5n-Bu4Sn at various feed ratios to give copolymers in moderate yields. The formed copolymers were yellow to orange solids, which were soluble in common organic solvents such as toluene and CHCl3. The highest weight-average molecular weights (Mw) of these copolymers reached ca. 6 × 105 and tough films could be obtained by solution casting. Their onset temperatures of weight loss in air were observed around 400°C, indicating high thermal stability. The oxygen permeability coefficients at 25°C of copoly(m,m-(Me3Si)2 DPA/DPA) (feed ratio 1:1) and copoly(m,m-(Me3Si)2DPA/p-Me3SiDPA) (feed ratio 1:2) were 21 and 100 barrers, respectively, medium in magnitude among polymers from substituted acetylenes.  相似文献   

3.
Three disubstituted acetylenes with an adamantyl group—1-(p-adamantylphenyl)-2-chloroacetylene (ClpAdPA), 1-(p-adamantylphenyl)-1-propyne (pAdPP), and 1-(p-adamantylphenyl)-2-phenylacetylene (pAdDPA)—polymerized in good yields in the presence of MoCl5- or TaCl5-based catalysts. The highest weight-average molecular weights of poly(ClpAdPA), poly(pAdPP), and poly(pAdDPA) reached 3.6 × 105, 1.1 × 106, and 6.0 × 106, respectively. The polymers were yellow to white solids and completely soluble in toluene, chloroform, and so forth. These polymers thermally were fairly stable, and the onset temperatures of weight loss in air were over 360 °C. Poly(pAdPP) and poly(pAdDPA) provided free-standing films by solution casting, and their oxygen permeability coefficients (PO2) at 25 °C were 8.6 and 55 barrers [1 barrer = 1 × 10−10 cm3 · (STP) · cm/(cm2 · s · cm Hg)], respectively, which are relatively small compared to those of other substituted polyacetylenes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4546–4553, 1999  相似文献   

4.
High‐molecular‐weight poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene], poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl) acetylene], and their copolymers were synthesized by the polymerization with TaCl5n‐Bu4Sn. The obtained polymers were sulfonated by using acetyl sulfate to give sulfonated poly(diphenylacetylene)s with different degrees of substitution. The degrees of sulfonation of poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene] and copolymers were in the range of 0.57–0.85. When poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl)acetylene] was sulfonated, the sulfonated poly(diphenylacetylene) with the highest degree of sulfonation was obtained among all the polymers in this study. Its degree of sulfonation was 1.55. All the sulfonated polymers exhibited high CO2 permselectivity, and their CO2/N2 separation factor were over 31. The sulfonated poly(diphenylacetylene) with the highest degree of sulfonation showed the highest CO2/N2 separation factor of 75. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6463–6471, 2009  相似文献   

5.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

6.
Chloro- and aryl-substituted acetylene monomers having an optically active group were polymerized by a Pd catalyst [(tBu3P)PdMeCl] bearing a bulky phosphine ligand, and by MoCl5 for comparison. The corresponding disubstituted acetylene polymers with Mn's = 2000–19,500 and 6900–10,800 were obtained in 29–83% and 11–62% yields when the Pd and Mo catalysts were used, respectively. The formation of polyacetylenes, poly[(R)- 1p ], poly[(R)- 1m ], and poly[(S)- 2p ] were confirmed by SEC and the presence of a Raman scattering peak based on the alternating double bonds of the main chain. Pd-based poly[(R)- 1m ] exhibited CD signals around 350 nm assignable to a certain secondary structure, while Mo-based poly[(R)- 1m ] did not. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3011–3016  相似文献   

7.
Novel polyacetylenes, poly( 1 ) and poly( 2 ) substituted with benzoxazine rings were synthesized by the polymerization of the corresponding acetylene monomers 1 and 2 using Rh catalysts, [(nbd)RhCl]2, and (nbd)Rh+BPh4 (nbd = 2,5‐norbornadiene). The polymers were heated at 250 °C under N2 to obtain the corresponding polybenzoxazine resins, poly( 1 )′ and poly( 2 )′ possessing polyacetylene main chains via the ring‐opening polymerization of the benzoxazine moieties. The polyacetylene backbones were maintained after crosslinking reaction at 250 °C, which were confirmed by Raman spectroscopy. The benzoxazine resins were thermally highly stable as evidenced by differential scanning calorimetry and thermogravimetric analysis. The surface of poly( 1 )′ film became hydrophilic compared to that of poly( 1 ), while the surfaces of poly( 2 ) and poly( 2 )′ films showed almost the same hydrophilicity judging from the water contact angle measurement. Poly( 1 )′ and poly( 2 )′ exhibited refractive indices smaller than those of poly( 1 ) and poly( 2 ). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1884–1893  相似文献   

8.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   

9.
Polymerizations of 1‐naphthylacetylene (1‐NA) and 9‐anthrylacetylene (9‐AA) by various transition metal catalysts were studied, and properties of the polymers were clarified. 1‐NA polymerized with WCl6‐based catalysts to offer dark purple polymers in good yield. Especially, a binary catalyst composed of WCl6 and Ph3Bi gave a polymer with high molecular weight (Mw = 140×103) and sufficient solubility in common solvents. The use of Mo and Rh catalysts, in contrast, resulted in the formation of insoluble red poly(1‐NA)s. 9‐AA gave insoluble polymers by both WCl6‐ and MoCl5‐based catalysts in moderate to good yields. Copolymerization of 9‐AA with 1‐NA by WCl6–Ph3Bi provided a soluble copolymer which exhibited the largest third‐order nonlinear optical susceptibilities (χ(3)(−3ω; ω, ω, ω) = 40×10−12) among all the substituted polyacetylenes synthesized so far. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 277–282, 1999  相似文献   

10.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

11.
The metathesis polymerization of 1- and 2-ethynylanthracenes (1-EA and 2-EA) and 2- and 3-ethynylphenanthrenes (2-EP and 3-EP) in the presence of various WCl6-based catalysts produced widely conjugated soluble polymers with relatively high molecular weights. The highest weight-average molecular weights of poly(1-EA) and poly(2-EA) reached 61,000 and 26,000, respectively, when Ph4Sn was used as cocatalyst, while those of poly(2-EP) and poly(3-EP) reached 23,000 and 65,000, respectively, with Ph3Bi as cocatalyst. In contrast, MoCl5-based catalysts were hardly or not effective for these monomers. A large red-shifted peak was observed centering at 570 nm (the cutoff at 750 nm) in the absorption spectrum of poly(1-EA), while the red-shifted peaks were seen around 500 nm (the cutoffs near 700 nm) in the spectra of other polymers, indicating wide conjugations of the polymer chains. The configurational structures of all the polymers confirmed by DSC and 1H-NMR were trans structures. However, poly(1-EA) and poly(3-EP) appeared to consist partly of cis structures in their main chains. All of the present polymers showed relatively high thermal stability in air compared with poly(phenylacetylene). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3131–3137, 1998  相似文献   

12.
The new conjugated polyacetylene derivative dehydrated poly(4-hydroxy-4-phenyl-1-butyne) [dehydrated poly(HPB)] was synthesized from poly(4-hydroxy-4-phenyl-1-butyne) [poly(HPB)], which was obtained by the polymerization of 4-hydroxy-4-phenyl-1-butyne. The resulting dehydrated poly(HPB) was soluble in common organic solvents. The dehydrated poly(HPB) was found to have extended conjugated polyene structure. The dehydrated poly(HPB) was thermally stable up to 300°C. The electrical conductivity of I2-doped dehydrated poly(HPB) was 10−2 S cm−1. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 949–953, 1998  相似文献   

13.
Two novel phenylacetylene derivatives bearing diethylaminomethyl groups at the meta position on phenyl groups [3‐(N,N‐diethylaminomethyl)phenyl]acetylene ( 1 ) and [3,5‐bis(N,N‐diethylaminomethyl)phenyl]acetylene ( 2 ) were synthesized and polymerized with [Rh(nbd)Cl]2 (nbd: norbornadiene). Both monomers gave highly cis–transoidal stereoregular polymers that exhibited an induced circular dichroism (ICD) in the UV–visible region, probably because of a prevailing one‐handed helical conformation upon complexation with optically active carboxylic acids such as mandelic acid and lactic acid. The sign of the Cotton effects reflected the absolute configuration of the chiral acids. Therefore, these polymers can be used as a novel probe for determining the configuration of chiral acids. The polymers were stable in the presence of chiral acids in solution. The poly‐ 1 complexed with chiral acids exhibited a split‐type ICD, whereas the poly‐ 2 complexed with chiral acids showed a different, non‐split‐type ICD. The ICD pattern of the poly‐ 1 /chiral acids complexes dramatically changed with an increase in the concentration of the chiral acids, thus showing a non‐split‐type ICD similar to those of the poly‐ 2 /chiral acid complexes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3180–3189, 2001  相似文献   

14.
Monomeric fluoroalkoxyalkyl(phenyl)dichlorosilanes were synthesized with quantitative yields by hydrosilylation of allyl ethers of fluoroalcohols with phenyldichlorosilane with Pt(Ph3Sb)2Cl2 complex as a catalyst. Starting from these monomers, corresponding polysilanes with weight‐average molecular weights of 2–3 × 104 were obtained by the Wurtz reaction. Increasing the CF2 groups containing two to six monomer units caused the char yields to increase from 3 to 48% at 800 °C in air. The emission characteristics of these polysilanes in a chloroform solution were examined. They had a narrow peak at 344 nm with a small Stokes shift (≈20 nm). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3761–3767, 2003  相似文献   

15.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

16.
Well‐defined poly(3‐alkyl‐4‐benzamide) was synthesized by means of chain‐growth condensation polymerization of phenyl 3‐octyl‐4‐(4‐octyloxybenzyl(OOB)amino)benzoate ( 1c ) from initiator 2 , followed by removal of the OOB groups on amide nitrogen of poly 1c . Polymerization of 1c with phenyl 4‐(trifluoromethyl)benzoate ( 2b ) in the presence of 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) and LiCl in THF at ?10 °C gave poly 1c with a narrow molecular weight distribution (Mw/Mn ≤ 1.08) and a well‐defined molecular weight (Mn = 4480–12,700) determined by the feed ratio of monomer to initiator (from 10 to 30). The OOB groups of poly 1c were removed with H2SO4 to give the corresponding N‐unsubstituted poly(p‐benzamide) (poly 1c′ ) with low polydispersity. The solublity of poly 1c′ in polar organic solvents was dramatically higher than that of poly(p‐benzamide), demonstrating that introduction of an alkyl group on the aromatic ring is very effective for improving the solubility of poly(p‐benzamide). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 360–365  相似文献   

17.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

18.
Alkali and earth‐alkali salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as monomers in the polyesterification with an α,ω‐dihalide monomer, such as 1,4‐dichlorobutane (DCB), 1,4‐dibromobutane (DBB), α,α′‐dichloro‐p‐xylene (DCX), and α,α′‐dibromo‐p‐xylene (DBX). Novel linear polymers that possessed repeating moieties of dicyclopentadiene ( DCPD ) in the backbone were thus prepared. The IR and NMR spectra indicated that poly(tetramethylene dicyclopentadiene dicarboxylate) (PTMDD) with a number‐average molecular weight (Mn ) of about 1× 104 and poly(p‐xylene dicyclopentadiene dicarboxylate) (PXDD) with a Mn of 4–6 × 103 were obtained with an yield of about 80% via the polyesterification of the alkali salts with DBB and DCX, respectively. The reaction was carried out in the presence of a phase transfer catalyst, such as BzMe3NBr or poly(ethylene glycol), in DMF at 100 °C for 4 h. Oligomers with a lower Mn (1–2 × 103) were obtained when the earth‐alkali salts were employed as salt monomers. Compared to the irreversible linear polymers, poly(p‐xylene terephthalate) (PXTP) and poly(p‐xylene maleate) (PXM), prepared through the reaction between DCX and the potassium salts of terephthalic and maleic acid, respectively, the specific viscosities (ηsp) of the new linear polymers increased abnormally with the decrease of the temperature from 200 °C to 100 °C. This occurred due to the thermally reversible dedimerization/redimerization of  DCPD moieties of the backbone of the polymers via the catalyst‐free Diels–Alder/retro Diels–Alder cycloadditive reactions. The ratio of the ηsp at 100 °C and 200 °C of the reversible polymers was found to be much higher than that of PXTP and PXM, even when the heating/cooling cycle was carried out several times under a N2 atmosphere. The obtained results indicated that thermally reversible covalently bonded linear polymer can be obtained by introducing the  DCPD structure into the backbone of the polymer through the polymerization of a monomer containing the  DCPD moiety. The reversible natures of the polymers and oligomers might be useful in preparing easily processable and recyclable polymers and thermosensor materials. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1662–1672, 2000  相似文献   

19.
Summary. Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

20.
Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号