首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High molecular weight poly(2,5-benzophenone) derivatives were prepared by Ni(0)-catalyzed coupling of 4′-substituted 2,5-dichlorobenzophenones. Monomers were synthesized by the Friedel–Crafts reaction of 2,5-dichlorobenzoyl chloride and alkyl-substituted benzenes in the presence of aluminum chloride. The resulting polymers are soluble and show no evidence of crystallinity by DSC. Number average molecular weights are in the range of 9.2 × 103–11.7 × 103 g/mol by multiple angle laser light scattering (MALLS). Molecular weights obtained by MALLS are only slightly lower (∼90%) than those obtained by GPC (polystyrene standards). These polymers exhibit high thermal stability with glass transition temperatures ranging from 173 to 225°C and weight loss occurring above 450°C in nitrogen and 430°C in air. Additionally, the polymers were blended and the resulting polymer films appear to be miscible by DSC results. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2611–2618, 1998  相似文献   

2.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

3.
Soluble brominated poly(arylene ether)s containing mono‐ or dibromotetraphenylphenylene ether and octafluorobiphenylene units were synthesized. The polymers were high molecular weight (weight‐average molecular weight = 115,100–191,300; number‐average molecular weight = 32,300–34,000) and had high glass‐transition temperatures (>279 °C) and decomposition temperatures (>472 °C). The brominated polymers were phosphonated with diethylphosphite by a palladium‐catalyzed reaction. Quantitative phosphonation was possible when 50 mol % of a catalyst based on bromine was used. The diethylphosphonated polymers were dealkylated by a reaction with bromotrimethylsilane in carbon tetrachloride followed by hydrolysis with hydrochloric acid. The polymers with pendant phosphonic acid groups were soluble in polar solvents such as dimethyl sulfoxide and gave flexible and tough films via casting from solution. The polymers were hygroscopic and swelled in water. They did not decompose at temperatures of up to 260 °C under a nitrogen atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3770–3779, 2001  相似文献   

4.
A series of novel perfluorononenyloxy group containing polyarylates were synthesized by a high-temperature solution condensation of 5-(perfluorononenyloxy)-isophthaloyl chloride ( II ) with various aromatic diols in o-dichlorobenzene. All the polyarylates were amorphous and readily soluble in many organic solvents such as o-chlorophenol, o-dichlorobenzene, chloroform, and polar aprotic solvents at room temperature or on heating. Transparent, tough, and flexible films of these polymers could be cast from the o-chlorophenol solutions. The polymers having inherent viscosity of 0.61–1.63 dL/g were obtained in quantitative yields. These polymers were thermally quite stable. The glass transition temperatures of these polyarylates were in the range of 219–242°C by DSC and 224–251°C by DMA, and the 10% weight loss temperatures in nitrogen and air were above 415 and 397°C, respectively. Moreover, these polymers maintained good mechanical properties (G′ ∼ 108 Pa) up to 220°C and had lower moisture absorption than common polyarylates. The dielectric constants of these polymers ranged from 3.23 to 3.75. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 645–653, 1998  相似文献   

5.
Linear polyaryl(ether ketones) containing tert-butyl pendent groups were prepared from aromatic hydrocarbons and aromatic diacid chlorides, both classes of monomers containing tert-butyl pendent groups. The polymers were prepared in high yield and high molecular weight by low-temperature precipitation polycondensation in 1,2-dichloroethane. The presence of meta-oriented moieties and bulky pendent groups played a beneficial role with regard to solubility, while the thermal transitions and thermal resistance were not greatly impaired relative to conventional all para-oriented polyaryl(ether–ketones). The current polyaryl(ether–ketones) showed glass transition temperatures in the range 170–240°C and decomposition temperatures, as measured by TGA, of about 500°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1251–1256, 1998  相似文献   

6.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

7.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

8.
Polysulfonates with reactive pendant chloromethyl groups were synthesized by polyadditions of bisepoxides with disulfonyl chlorides. The polyaddition of bisphenol A diglycidyl ether (BPGE) with m-benzene disulfonyl chloride (m-BDSC) occurred in anisole without any catalyst at 130°C for 24 h. However, polymer with high molecular weight was not obtained. On the other hand, the polyadditions of BPGE with m-BDSC proceeded very smoothly with high yield (81–91%) to give polymers with relatively high molecular weights in anisole at 130°C for 24 h when quaternary phosphonium salts were used as catalysts. The polyaddition was also enhanced by the addition of certain crown ether complexes. However, the catalytic activity of these compounds was less than those of quaternary phosphonium salts. Furthermore, polyadditions of certain bisepoxides with disulfonyl chlorides were also carried out to produce the corresponding polymers under the same reaction conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 249–256, 1998  相似文献   

9.
A series of new high molecular weight poly(arylene ether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have been synthesized. The inherent viscosities of these polymers are in the range of 0.33–0.64 dL/g. They are amorphous and readily soluble in chloroform, DMF, and DMAc. The glass transition temperatures of the polymers range from 241 to 320°C and the 5% weight loss temperatures in nitrogen atmosphere range from 473 to 517°C. The hydroxy group in the monomer 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one has been selectively transformed into the N,N′-dimethylthiocarbamate group, which was then rearranged to give the S-(N,N′-dimethylcarbamate) group via the Newman–Kwart rearrangement reaction. A series of poly(arylene thioether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have also been synthesized via two types of reactions, a N C coupling reaction and a one-pot reaction between the S-(N,N′-dimethylcarbamate) and activated dihalo compounds, in diphenyl sulfone in the presence of a cesium carbonate and calcium carbonate mixture. These poly(arylene thioether)s also have high glass transition temperatures (ranging from 217–303°C) and high thermal stabilities. Compared with their poly(ether) analogs, the poly(arylene thioether)s have glass transition temperatures several degrees lower, which is attributed to the more flexible C S C bonds. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 455–460, 1998  相似文献   

10.
The synthesis and the characterization of a set of polymers obtained by polycondensation of n-alkoxyterephthalic acid (n = 1, 3, 5, 7) and 4,4′-dihydroxybiphenyl are reported. The n-alkoxy insertion promotes the processability of the material by lowering the melting temperature. All polymers show the nematic phase at about 300°C, almost independently of the length of lateral substituent. The isotropization is not observed up to 450°C, where thermal decomposition occurs. The temperature of glass transition decreases with increasing n, ranging from 170°C (n = 5) to 220°C (n = 1). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 263–267, 1998  相似文献   

11.
Poly(benzobisoxazoles) (PBOs), poly(benzobisthiazoles) (PBTs) and copolymers thereof containing the 2,5-dihydroxybicyclo[2.2.2]octane moiety have been prepared and studied. The homopolymers were synthesized by the polycondensation of 2,5-dihydroxybicyclo[2.2.2]octane-1,4-dicarboxylic acid with 4,6-diamino-1,3-benzenediol dihydrochloride or 2,5-diamino-1,4-benzenedithiol dihydrochloride in poly(phosphoric acid). Random and block copolymers (PBO–PBT) were also prepared. The polymers were characterized by solubility, X-ray diffraction, spectroscopy (infrared and solid-state 13C nuclear magnetic resonance), and thermal analysis such as differential scanning calorimetry and thermogravimetric analysis. Thermogravimetric analysis showed thermal stability of the polymers above 375°C in air and under argon atmosphere. The polymers exhibited high resistance to organic and inorganic solvents. The polymers were converted to the more stable aromatic polymers via dehydration and retro Diels–Alder reactions of the 2,5-dihydroxybicyclo[2.2.2]octyl moiety by pyrolysis. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 277–281, 1998  相似文献   

12.
An oxoaminium chloride that is prepared by reacting 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) with chlorine in carbon tetrachloride initiates radical polymerization of styrene at 120°C. In the early stages of polymerization, a monomeric adduct, 2,2,6,6-tetramethyl-1-(2-chloro-1-phenylethoxy)piperidine, is formed. Thereafter, styrene polymerization exhibiting the characteristics of living polymerization proceeds. High molecular weight polymers with relatively narrow molecular weight distributions are obtained by this polymerization. 1H-NMR spectra of the polymers reveal that a chlorine atom and a TEMPO group are present at the α- and ω-termini, respectively. The monomeric adduct was prepared by heating the oxoaminium chloride and styrene in carbon tetrachloride at 65–70°C, and was characterized by 1H- and 13C-NMR spectroscopy. It was found to be suitable as an initiator for nitroxide-mediated radical polymerization of styrene to make polymers with chlorine on the chain end. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2555–2561, 1998  相似文献   

13.
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009  相似文献   

14.
We carried out the polyaddition of dye‐embedded diols with diisocyanates to obtain novel nonlinear optical (NLO) polyurethanes, where the NLO units were embedded in the polymer backbone. The obtained polymers showed high glass‐transition temperatures (138–184 °C) and thermal stability (temperature of 10% weight loss under nitrogen = 227–287 °C). The λ maximum of the polymers was 521–556 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2620–2624, 2001  相似文献   

15.
Poly(thianthrene phenylene sulfide) and poly(thianthrene sulfide) have been prepared by nucleophilic aromatic substitution polymerization of the activated monomer 2,7‐difluorothianthrene with bis thiophenoxide and sulfide nucleophiles, respectively. The resulting polymers are thermally stable, amorphous materials that have been characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometry, UV‐Vis spectroscopy, refractometry, and intrinsic viscosity (IV) measurements. The polymers produced exhibit 5% weight loss values approaching 500 °C in inert and air atmospheres and glass transition temperatures that range from 149 to 210 °C. Poly(thianthrene phenylene sulfide) with a number average molecular weight of 22,100 g/mol has been synthesized with an IV in DMPU of 0.62 dL/g at 30 °C. Creasable films of this polymer have been prepared by solvent casting and melt pressing at 250 °C. Films of poly(thianthrene phenylene sulfide) exhibit transparencies greater than 50% at wavelengths exceeding 400 nm and a high refractive index value of 1.692 at a wavelength of 633 nm, making the polymer interesting for optical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2453–2461, 2009  相似文献   

16.
Novel poly(arylene ether)s were synthesized from new biphenol monomers 14–16 1 containing imido‐ or dicyanoarylene groups. The syntheses of these polymers were carried out in tetramethylene sulfone in the presence of anhydrous K2CO3, by a nucleophilic substitution condensation between the biphenol and activated difluoro compounds to give high molecular weight polymers. All the polymers have high Tg 's and good thermal stability as determined from DSC and TGA analysis. Inherent viscosities of these polymers are in the range of 0.33–0.63 dL/g. They are amorphous and readily soluble in NMP, DMF, and DMSO. The glass‐transition temperatures of the polymers range from 248–295 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1318–1322, 2000  相似文献   

17.
A new homologous series of SCLCPs containing the 4-cyanobiphenyl mesogenic group attached to the polymaleimide backbone through paraffinic spacers of two to eight methylene units have been prepared. All the polymers exhibit liquid crystalline behavior; specifically SAd- (or SC-) like and nematic phases are observed. The glass transition temperature decreases from 150 to 43°C on increasing spacer length. The isotropization temperatures exhibit an odd–even effect on varying the length and parity of the spacer, in which the odd members exhibit the higher values. This is attributed to the change in the average shape of the side chain as the parity of spacer is varied. The isotropization temperatures (>300–120°C) and the mesophase thermal stabilities (190–60°C) are high. Comparison is made with polymers containing the same mesogenic group attached to backbones of decreasing rigidity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2531–2546, 1998  相似文献   

18.
Crosslinkable fluorinated poly(arylene ethers) (FPAE-Fn-PEP) with high transparency and high thermal stability have been investigated for low-loss optical waveguide materials. FPAE-Fn-PEP bearing phenyl ethynyl moiety at the polymer chain end were synthesized by the reaction of 4,4′-(hexafluoro-isopropylidene)diphenol with an excess decafluorobiphenyl, followed by the reaction of 4-phenyl ethynyl phenol. The Mns and Mw/Mns of the polymers determined by GPC with polystyrene standard were in the range of 6200 to 19,400 and 1.4 to 2.04, respectively. The resulting polymers were thermally crosslinked at 320°C for 2 h. The cured polymers show good chemical resistance and high thermal stability up to 510°C under nitrogen. The refractive indices of their films were controlled between 1.495 and 1.530 at 1.55 μm by adjusting molecular weight. A single-mode channel waveguide made of FPAE-F20-PEP was fabricated by conventional photolithography and O2 reactive ion etching (RIE). The propagation loss of the channel waveguide was measured and found to be less than 0.2 dB/cm at 1.55 μm. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2881–2887, 1998  相似文献   

19.
A series of new polyamides 3 were synthesized by direct polycondensation of the 1,6-bis[4-(4-aminophenoxy)phenyl]diamantane (1) with various dicarboxylic acids. The polyamides had inherent viscosities of 0.45–1.90 dL/g and number-average molecular weights (Mn) of 24,000–110,000. Dynamic mechanical analysis (DMA) reveals that polymers 3 have two relaxations on the temperature scale between −100 and 400°C. Their α relaxations occurred at high temperatures, ranging from 338 to 389°C. Moreover, these polymers remained quite stable at high temperatures and maintained good mechanical properties (G′ = ca. 108 Pa) up to temperatures close to the main transition markedly exceeding 350°C. Due to the bulky diamantane elements and the flexible ether segments, the polymers 3 were amorphous and soluble in a number of organic solvents such as pyridine, N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAc). The polyamides 3 have tensile strengths of 56.7–90.2 MPa, elongation to breakage values of 7.5–27.7%, and initial moduli of 1.8–2.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2185–2192, 1998  相似文献   

20.
A set of new aromatic polyamides containing ether and benzonorbornane units were synthesized by the direct phosphorylation polycondensation of 3,6‐bis(4‐carboxyphenoxy)benzonorbornane with various aromatic diamines. The polymers were produced in high yields and moderate to high inherent viscosities (0.64–1.70 dL/g). The polyamides derived from rigid diamines such as p‐phenylenediamine and benzidine were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and afforded flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 95–101 MPa, elongations at break of 13–25%, and initial moduli of 1.97–2.33 GPa. The amorphous polyamides showed glass‐transition temperatures between 176 and 212 °C (by differential scanning calorimetry) and softening temperatures between 194 and 213 °C (by thermomechanical analysis). Most of the polymers did not show significant weight loss before 450 °C in nitrogen or in air. Some properties of these polyamides were also compared with those of homologous counterparts without the pendent norbornane groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 947–957, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号