首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zone-drawing and zone-annealing treatment was applied to poly(p-phenylene sulfide) fibers in order to improve their mechanical properties. The zone-drawing (ZD) was carried out at a drawing temperature of 90°C under an applied tension of 5.5 MPa, and the zone-annealing (ZA) was carried out at an annealing temperature of 220°C under 138.0 MPa. The differential scanning calorimetry (DSC) thermogram of the ZD fiber had a broad exothermic transition (Tc = 110°C) attributed to cold-crystallization and a melting endotherm peaking at 286°C. The Tc of the ZD fiber was lower than that (Tc = 128°C) of the undrawn fiber. In the temperature dependence of storage modulus (E′) for the ZD fiber, the E′ values decreased with increasing temperature, but increased slightly in the temperature range of 90–100°C, and decreased again. The slight increase in E′ was attributable to the additional increase in the crosslink density of the network, which was caused by strain-induced crystallization during measurement. The resulting ZA fiber had a draw ratio of 6.0, a degree of crystallinity of 38%, a tensile modulus of 8 GPa, and a tensile strength of 0.7 GPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1731–1738, 1998  相似文献   

2.
A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473–481, 1998  相似文献   

3.
Preliminary results on the synthesis and characterization of anisotropic networks, oriented on a macroscopic scale, are reported. Fiber samples of segmented thermotropic liquid-crystalline polymers bearing the oxypentenyl lateral substituent have been crosslinked via thermally activated radical reaction. This was made possible by immersion of fiber samples in dichloromethane containing t-butylperoxybenzoate as activating agent, thus allowing its diffusion in the samples. Subsequent annealing at 145°C brings us to an anisotropic network with no loss of the original orientation. A mesophase is stabilized and no structural modification is observed by heating samples from room temperature up to 400°C, where thermal decomposition takes place. Crosslinked fibers exhibit good tensile properties, at both room temperature and at 150°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 433–438, 1998  相似文献   

4.
In this work, flexible nanofibrous membranes (mats) of poly(ethylene oxide) (PEO) with and without multiwall carbon nanotubes (MWNTs) were fabricated by electrospinning. The effects of annealing and MWNT concentration on mat morphology, MWNT dispersion within the nanofibers, and the mechanical properties of electrospun mats were studied. Annealing temperatures ranged from 60 °C to 64 °C [near the melting temperature (64 °C via differential scanning calorimetry)] for 4 minutes. Samples were annealed with and without applied tension (constrained and unconstrained annealing). Annealing at the highest temperature (64 °C), before the loss of fibrous morphology, significantly improved fiber–fiber bonding and therefore the tensile strength of the mats. Compared with unconstrained annealing, constrained annealing introduced fiber alignment (and therefore molecular orientation) along the tensile axis (direction of constraint) during annealing and resulted in a significant increase in modulus for all samples (with and without MWNTs). The use of constrained annealing may be a facile approach to enhance modulus in nanofibrous mats while maintaining high porosity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 787–796  相似文献   

5.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   

6.
The melting behavior of isothermally crystallized poly(butylene succinate) (PBS) has been investigated using differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. The samples crystallized between 80°C to 100°C show middle endotherm at the position just before the high exotherm, while the others under 80°C show two endotherms (low and high). From the results of the melting peak vs. crystallization temperature plot, it was suggested that the middle endotherm corresponds to the melting process of the original crystallites and the high endotherms to the melting process of the recrystallized ones. As the DSC heating rate was increased, the peak temperature of the low and middle endotherms increased and that of the high endotherm decreased, indicating that the low endotherm was due to the original crystallites as well as the middle endotherm. Consequently, in the heating scan of PBS, the existence of two kinds of morphologically different crystallites as well as the process of melting and recrystallization becomes evident. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1357–1366, 1999  相似文献   

7.
The rheological behavior and fiber spinning are investigated for the Celanese liquid crystal copolyester 30 mol% p-hydroxybenzoic acid and 70 mol% 2-hydroxy-6-naphthoic acid (designated as 30HBA/70HNA) with inherent viscosity 7.8 dL/g. Shear thinning viscosity, and yield stress are observed at low shear stress, which probably results from the existence of crystallites in the melt. The crystal-nematic melting point of the copolymer, as measured by differential scanning calorimetry, is around 309°C. Extrudates are collected at four different temperatures ranging from 315 to 345°C. Melt fracture and die swell are observed above 335°C at low shear stress. A wide-angle x-ray diffraction (WAXS) study of an annealed sample indicates that the abnormal phenomenon may be due to crystallites arising from blocky units of HNA. Fiber spinning is performed at high shear rate at 325 and 335°C. Flow is stable under these conditions. The spin draw ratio is the ratio of take-up velocity to the velocity of extrudate existing from the capillary. The initial modulus reaches a maximum at a fairly low spin draw ratio. Instron and wide-angle x-ray (WAXS) studies show that the mechanical properties and orientation are poor for the fiber spun near the crystal-nematic melting point. Also, thermal history is found to affect the rheological behavior. Heat treatment offibers, particularly those which are well oriented, brings an improvement of mechanical properties.  相似文献   

8.
By means of high-temperature electrospinning process, syndiotactic polypropylene (sPP) nanofibers with an average diameter of 127 nm were obtained using a rotating disc as a collector. The aligned fibers were subjected to progressive heating for fiber melting. During heating, structural evolution of the sPP nanofibers was investigated in situ by means of two-dimensional wide-angle and small-angle X-ray scattering with synchrotron radiation sources. It was found that the as-spun fibers consist of the antichiral form I (9 %), mesophase (31 %), and amorphous phase (60 %), in the absence of isochiral form II. Upon heating, the mesophase started to melt and completely disappeared at 90 °C. The melting of the mesophase directly produced amorphous chains at 35–60 °C, and brought up the isochiral form II at low temperatures (60–70 °C), as well as the antichiral form I at high temperatures (70–110 °C). These events were in accordance with the DSC heating curve, which exhibited a small endotherm centered at 52 °C for the mesophase melting, followed by a shallow and broad exotherm associated with two phase-transition events, i.e., the crystal reorganization and the crystallization of supercooled liquid. The former is likely due to the solid–solid transition of meso→II phase as suggested by Lotz et al. (Macromolecules 31:9253, 1998), and the latter is relevant with crystallization of amorphous chains to develop the thermodynamic stable form I phase at high temperatures.  相似文献   

9.
A high‐tension annealing (HTA) method has been applied to zone‐annealed poly(ethylene‐2,6‐naphthalate) (PEN) fibers in order to further improve their mechanical properties. The HTA treatment was carried out under an applied tension of 428 MPa at a treating temperature of 175 °C. The applied tension was close to the tensile strength at 175 °C. The resulting HTA fiber had a birefringence of 0.492 and degree of crystallinity of 57%. Wide‐angle X‐ray diffraction (WAXD) photographs of the HTA fibers showed three reflections (010, 100, and 1 10) attributed to an α form crystal, but no (020) reflection attributed to a β form was observed in the equator. The tensile modulus and tensile strength increased with processing, and the HTA fiber had a maximum modulus of 33 GPa, a tensile strength of 1.1 GPa, and a storage modulus of 33 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 61–67, 2000  相似文献   

10.
Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6–20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45–100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36–48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551–2562, 1998  相似文献   

11.
Effect of dyeing on melting behavior of poly(lactic acid) fabric   总被引:5,自引:0,他引:5  
The effect of the dyeing on the melting behavior of poly(lactic acid) fabrics was investigated by differential scanning calorimeter. The DSC melting peaks at 10°C min-1 of the untreated poly(lactic acid) fabric were observed at a temperature higher than those of the dyed fabrics. The restricting force from the extended tie molecules along the fiber axis seems to decrease in the dyeing process. When the sample was rapidly heated, the crystallites melted at lower temperatures since recrystallization was restricted. It was estimated, based on the heating-rate dependency of melting behavior, that the original crystallites of the untreated sample melted at 146.1°C and those of the dyed samples melted at higher temperatures, suggesting that their crystallites are grown to be more perfect in the dyeing process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

13.
The crystallization behavior and morphology of polymerized cyclic butylene terephthalate (pCBT) were investigated by thermal differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The spherulite growth rate was analyzed based on the Hoffman and Lauritzen theory to better understand the crystallization behavior. We found four typical morphologic features of pCBT corresponding to the crystallization temperature spectrum: usual negative spherulite, unusual spherulite, mixed birefringence spherulite coexisting with boundary crystals, and highly disordered spherulitic crystallites. The Avrami crystallization kinetics confirmed the occurrence of combined heterogeneous nucleation accompanied by a change in the spherulitic shape of pCBT, which also agreed with the PLM results. The equilibrium melting temperature and glass transition temperature of pCBT were 257.8 °C and 41.1 °C, respectively. A regime II–III transition occurred at 200.9 °C, which was 10 °C lower than that reported for poly(butylene terephthalate) (PBT). Coinciding with and attributed to the regime transition, the boundary crystal disappeared at temperatures above 200 °C and the morphology changed from the mixed type to highly disordered spherulitic crystallites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1127–1134, 2010  相似文献   

14.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

15.
Atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, an independent rapid heating rate method for melting points, and cyclic mechanical testing were used to study semicrystalline thermoplastic elastomeric polypropylenes (ELPPs) and related semicrystalline polyolefins including ethylene copolymers. Low crystallinity (ca., 9 and 15%) ELPP samples were studied by AFM in the nonoriented and melt‐oriented states. AFM images taken as a function of time after quenching of a melt‐drawn and highly nucleated film resolved details of secondary crystallization involving lateral growth on the ordered row‐nucleated structures. For nonoriented films, isothermal melt crystallization at high temperatures (110 °C) led to similar features for the two ELPPs. The dominant crystalline morphology studied by AFM consisted of small (several nm in width) granular crystallites organized into immature but large spherulites spanning tens of microns. A striking cross‐hatch morphology was detected in regions of the surface in 110 °C crystallized samples, which is contrasted with melt‐drawn films where row nucleated structures dominated the morphology in the film under no external stress. AFM was also used to monitor the morphological changes that occurred as the films were stretched at 25 °C. Break‐down of lamellae was observed, resulting in oriented narrow fibrils. Cyclic stress‐strain curves showed the expected result where lower crystallinity ELPPs had higher recoverable levels of set after both 100 and 500% elongation. TMDSC was used to resolve the broad melting and recrystallization regions in these low to medium crystallinity ELPP systems, and to contrast the results with ethylene copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
Morphological survey on new PBO fiber (Zylon®) was conducted by X-ray and transmission electron microscopic studies. Crystal size, orientation of the crystal, fibrils, microvoids, and fine structure were discussed. It was found that the molecule in the fiber showed high orientation (more than 0.99 in Hermann's orientation function for heat-treated fiber) and relatively small crystal sizes in the longitudinal (160 Å) and the transverse (110 Å) directions. Crystal modulus estimated by extrapolation to perfect orientation on the plot of the fiber modulus as a function of fiber orientation (Northolt's method) shows discrepancy from the crystal modulus directly obtained by X-ray scattering. This discrepancy means that the Northolt's model is insufficient to describe the Young's modulus of PBO fiber. Microvoids elongated to the fiber direction were examined by small-angle X-ray scattering and transmission electron microscopic methods. The diameter of the microvoids was 20 Å to 30 Å and the fiber had a very thin microvoids-free layer (0.2 μm). Preferential orientation of the a-axis of crystal in the fiber was also confirmed. Summarizing these results, a structure model of the PBO fiber was proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 39–48, 1998  相似文献   

17.
The effect of shear on the crystallization behavior of the poly(ether ether ketone) (PEEK) has been investigated by means of ex situ wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering, and differential scanning calorimetry (DSC). The changes of the intensity of WAXD patterns along shear direction of the PEEK induced by short‐term shear were observed when the samples crystallized at 330 °C. The results showed that the dimensions of the crystallites perpendicular to the (110) and (111) planes reduced with the increase of shear rate, whereas the dimensions of the crystallites perpendicular to (200) plane increased with the increase of shear rate. Moreover, increasing shear rate can lead to the increase of the crystallinity as well as the average thickness of the crystalline layers. Correspondingly, a new melting peak at higher temperature was found during the subsequent DSC scanning when the shear rate was increased to 30 s?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 220–225, 2010  相似文献   

18.
We report the synthesis of a new high-temperature liquid-crystalline thermoset based on the phenylethynyl functional group. The monomer was a nematic thermotropic liquid crystal with a melting temperature of 268 °C. The extrapolated onset of the cure exotherm occurred at 313 °C. The cured thermoset retained the nematic liquid-crystalline order of the parent monomer. The monomer and crosslinked resin were characterized by differential scanning calorimetry, optical microscopy, and thermogravimetric analysis. The thermal stability of the crosslinked resin was determined in both air and nitrogen atmospheres at various heating rates. The onset of weight loss in air and nitrogen atmospheres was determined to be 397 and 422 °C, respectively, for a heating rate of 10 °C/min. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4184–4190, 1999  相似文献   

19.
Isotactic polypropylene (iPP) rich in β crystal modification was deformed by plane‐strain compression at T = 55–100 °C. The evolution of phase structure, morphology, and orientation were studied by DSC, X‐Ray, and SEM. The most important deformation mechanisms found were interlamellar slip operating in the amorphous layers, resulting in numerous fine deformation bands and the crystallographic slip systems, including the (110)[001]β chain slip and (110)[ ]β transverse slip. Shear within deformation bands leads to β→α solid state phase transformation in contrast to β→smectic transformation observed at room temperature. Newly formed α crystallites deform with an advancing strain by crystallographic slip mechanism, primarily the (010)[001]α chain slip. As a result of deformation and phase transformation within deformation bands β lamellae are locally destroyed and fragmented into smaller crystals. Deformation to high strains, above e = 1, brings further heavy fragmentation of lamellae, followed by fast rotation of crystallites with chain axis towards the direction of flow FD. This process, together with still active crystallographic slip, leads to the final texture with molecular axis of both crystalline β and α phase oriented along FD. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 92–108, 2008  相似文献   

20.
A polyethylene‐block‐polystyrene copolymer film having a bicontinuous crystalline/amorphous phases was tensile‐drawn under various conditions for the structural arrangement of these phases. The prepared film could be drawn below the melting temperature of the polyethylene component, with the highest drawability obtained at 60°C. However, the initial bicontinuous structure was gradually destroyed with increasing strain because the drawing temperature was lower than the glass‐transition temperature of the polystyrene component. Correspondingly, a necking phenomenon was clearly recognizable when samples were drawn. In contrast, drawing near the melting temperature of the polyethylene component produced less orientation of both the crystalline and amorphous phases, resulting in homogeneous deformation with lower drawing stress. These results indicated that the modification of the lower ductility of the polystyrene component was key to the effective structural arrangement of both phases by tensile drawing. Here, a solvent‐swelling technique was applied to improve polystyrene deformability even below its glass‐transition temperature. Tensile drawing after such a treatment successfully induced the orientation of both the crystalline and amorphous phases while retaining their initial continuities. A change in the deformation type from necking to homogeneous deformation was also confirmed for the stress–strain behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1731–1737, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号