首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MgCl2/THF/TiCl4 (TT-0) were thermally pretreated at 80°C for 5 min (TT-1) and 60 min (TT-2), and at 108°C for 5 min (TT-3) and 60 min (TT-4). These thermally pretreated catalysts showed comonomer enhancement effects in the ethylene-1-hexene copolymerization, while TT-0 catalyst did not. Comonomer enhancement effect of thermally pretreated catalysts could come from the generation of new active sites and change of its nature after heat treatment. 1-Hexene content in copolymer obtained with TT-1 was higher than those of TT-4 and TT-0. The morphology of homopolyethylene (PE) obtained with TT-1, 2, 3, and 4 was more regular and homogeneous than that of TT-0. This result could be due to the generation of active sites and change of its nature after thermal treatment of bimetallic catalyst. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2769–2776, 1997  相似文献   

2.
The multimodal differential scanning calorimetry melting endotherms observed for commercial linear low‐density polyethylenes are due to broad and multimodal short‐chain‐branching distributions. Multiple peaks, observed in melting endotherms of isothermally melt‐crystallized and compositionally homogeneous polyethylene copolymers are due to intrachain heterogeneity. This intrachain heterogeneity is quantified by the distribution of ethylene sequence lengths within the chains. These compositionally homogeneous copolymers undergo a primary crystallization, which produces a population of thicker lamellae, creating a network that places severe restrictions on segment transport in subsequent secondary crystallization, which produces a population of thinner crystals. The restrictions on segment transport imposed by the initial network created by the primary crystallization of thicker lamellae severely limits the total crystallinity achieved in the random copolymers studied. The solution crystallization of such copolymers produces a continuous distribution due to more facile segment transport in a dilute solution, in contradistinction to the multimodal distribution produced in the melt crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2800–2818, 2001  相似文献   

3.
Highly active catalysts for copolymerization have been prepared by the precipitation of MgCl2/ToCl4 complex with or without high surface area silica. Copolymerization of ethylene and 1-butene has been tested by using the prepared catalysts at various concentrations of 1-butene. The catalytic activities are 20–80 kg/g Ti h. The rate of copolymerization is strongly affected by the addition of 1-butene. The decay rate of copolymerization is first order with respect to time. Analyses of copolymers with solvent extraction, DSC, IR, XRD, and NMR were performed. Ethylene reactivity ratio (k11) for TiCl4/MgCl2/THF catalyst is calculated to be about 26 by NMR spectrum. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Morphology and isothermal growth rates of spherulites for the binary blends consisting of an isotactic polypropylene (i-PP) and an ethylene-1-hexene rubber (EHR) were examined as a function of the crystallization temperature ranging from 388 K to 418 K. In this study, two types of EHR's were employed: “ethylene rich” EHR and “1-hexene rich” EHR. The blends of i-PP with the EHR of 51 mol % 1-hexene are miscible in the molten state, whereas the blends with the EHR of 33 mol % 1-hexene are immiscible in the molten state. It is found that the isothermal spherulite growth rate of the miscible i-PP/EHR blends decreases with increasing the EHR fraction, whereas the spherulite growth rate of the immiscible i-PP/EHR blends is independent of the blend composition and is the same as that of the i-PP. Optical microscope observation of the miscible blends crystallized isothermally shows that there are no rubber domains either in the intraspherulitic or in the interspherulitic contact regions. On the other hand, the immiscible i-PP/EHR blends show a phase-separated morphology. Furthermore, the number of tangential lamellae of the miscible i-PP/EHR blends is found to be increased by blending of the EHR, leading to the spherulite with negative birefringence. The sign of birefringence of spherulites is unaffected by the regime transition as well as by the fold surface free energy. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 953–961, 1997  相似文献   

5.
The copolymerizations of ethylene with 1-hexene or 1-octene by using TiCl4 /MgCl2 /THF catalysts modified with different metal halide additives(ZnCl2, SiCl4, and the combined ZnCl2-SiCl4) were investigated based on catalytic activity and copolymer properties. It was found that the catalyst modified with mixed ZnCl2-SiCl4 revealed the highest activities for both ethylene/1-hexene and ethylene/1-octene copolymerization. The increase in activities was due to the formation of acidic sites by modifying the catalysts with Lewis acids. Based on the FTIR measurements, the characteristic C―O―C peaks of the catalysts modified with metal halide additives were slightly shifted to lower wavenumber when compared to the unmodified catalyst. This showed that the modified catalysts could generate more acid sites in the TiCl4 /MgCl2 /THF catalytic system leading to an increase in activities as well as comonomer insertion(as proven by13C-NMR). However, Lewis acidmodifications did not affect the microstructure of the copolymers obtained. By comparison on the properties of copolymers prepared with the unmodified catalyst, it was found that polymers with ZnCl2 and/or SiCl4 modification exhibited a slight decrease in melting temperature, crystallinity and density. It is suggested that these results were obtained based on the different amount of α-olefins insertion, regardless of the types of Lewis acids and comonomer.  相似文献   

6.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

7.
The effect of H2S contents on the transformation of 1-hexene with hydrogen over NiMoS/γ-Al2O3 catalyst was investigated.Inhibition of H2S on both hydrogenation and isomerization reactions of olefin has been demonstrated.And the promotion effect of H2S on the formation of C6 thiols and C12 thioethers has also been observed.It was found out that there was only one type of active site on the NiMoS/γ-Al2O3 for reactions which include hydrogenation reaction,isomerization reaction and sulfides formation reaction,...  相似文献   

8.
The crystallizability of narrow composition, homogeneous ethylene/1‐octene copolymers made with a constrained geometry catalyst, measured by CRYSTAF, follows a straight line correlation with the amount of total comonomer incorporated. The potential use of these resins as standards to calibrate CRYSTAF and TREF techniques is discussed. Although most of the resins analyzed have a narrow chemical composition distribution, there seems to be a relation between the broadness of the distribution and molecular weight, as predicted by Stockmayer's bivariate distribution. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 89–93, 1999  相似文献   

9.
刘柏平 《高分子科学》2013,31(4):591-600
The formations of defective MgCl2 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgCl2 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TiCl4 from coordinating on the MgCl2 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgCl2 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TiCl4 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TiCl4 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.  相似文献   

10.
The effects of the copolymer microstructure on the morphology evolution in polyethylene/poly(ethylene‐co‐α‐olefin) blends were investigated. Microscopy revealed that the melt‐phase morphology, inferred from the solid‐state morphologies of annealed and quenched samples, was strongly affected by the copolymer structure, that is, the branch content and branch length. Higher molecular weight α‐olefin comonomer residues and residue contents in the copolymers led to faster coarsening of the morphology. The molecular weight of the polyethylene and the copolymers affected the coarsening rates of the morphology, principally through its influence on the melt viscosity. The effects of the molecular weight were largely explained by the normalization of the coarsening rate data with respect to the thermal energy and zero‐shear‐rate viscosity. Thus, the effect of the molecular weight on the compatibility of the blends was much smaller than the effects of the branch length and branch number. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 965–973, 2004  相似文献   

11.
This study focuses on the kinetics of ethylene/propylene (homo/co) polymerization reactions using a high activity TiCl4/MgCl2/AlEt3 catalyst. The reactor system is a gas phase reactor equipped with an on-line composition control scheme. As such, important kinetic data such as the instantaneous reaction rate of each monomer is readily obtained. In the investigation, experiments are performed to study the effects of comonomer composition variations, temperature variations, hydrogen concentration variations, and variations in the Al/Ti ratio. It is observed that the ethylene and propylene instantaneous reaction rates show a rather peculiar pattern with the appearance of a second peak. Our work linked the existence of this peak to the Al/Ti ratio used. A theory based on the oxidation state change is proposed. This theory is also used to explain the effects of temperature changes and hydrogen concentration changes on the system. A variety of analytical techniques are employed to study the polymer properties and evidence is provided to support the existence of polymer partial melting at relatively high reaction temperatures. The resulting diffusion limitation is believed to be partially responsible for the observed activity decrease at such elevated temperatures. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2063–2074, 1997  相似文献   

12.
采用MgCl2负载TiCl4及1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体系,合成了1-己烯共聚率高且宽分子量分布的乙烯/1-己烯共聚物。 讨论了催化体系的组成、配比和聚合条件对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。 结果表明,n(Ti)∶n(Mg)=10∶1,n(XROH)∶n(MgCl2)=2.6∶1,n(Al)∶n(Ti)=100∶1,乙烯压力0.45 MPa,聚合温度80 ℃,聚合时间2 h,共聚单体(1-hexene)浓度0.25 mol/L时,催化效率达23.2 kg/g cat。 采用13C NMR、X-ray、SEM、WAXD、DSC、GPC等测试技术对催化剂、共聚物的结构进行了表征。 结果表明,在Zieglar-Natta(Z-N)催化体系中,给电子体多卤代醇与TiCl4结合,载体MgCl2的晶体结构发生了变化。 结晶度降低,有利于催化剂负载量的提高(ω(Ti)=4.8%)和催化效率增大。 催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。 多卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达5.1%。  相似文献   

13.
Crystallization analysis fractionation (Crystaf) is a polymer characterization technique for estimating the chemical composition distributions of semicrystalline copolymers. Although Crystaf has been widely used during the recent years, it is still a relatively new polymer characterization technique. More quantitative understanding of its fractionation mechanism is essential for further developments. In this work, three ethylene/1‐hexene copolymers with different 1‐hexene fractions, but similar number‐average molecular weights, were analyzed by Crystaf at several cooling rates. A mathematical model was proposed to describe the effect of comonomer fraction and cooling rate on Crystaf fractionation from a fundamental point of view. The model describes the experimental Crystaf profiles of ethylene/1‐hexene copolymers with different 1‐hexene fractions measured at distinct cooling rates very well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1010–1017, 2007  相似文献   

14.
Summary Rhodium(I) complexes, [Rh(COD)(amine)2](PF6) (COD = 1,5-cyclooctadiene, amine = 4-picoline, 3-picoline, 2-picoline, pyridine, 3,5-lutidine or 2,6-lutidine) immobilized on poly(4-vinylpyridine) in contact with water catalyzed both the hydroxycarbonylation of 1-hexene to propionic acid and the water-gas shift reaction (WGSR). The role of the coordinated amine on the catalytic activity was examined.  相似文献   

15.
(tBuC5H4)TiCl2(N=CtBu2) ( 1 ) exhibited remarkable catalytic activities (12,000–43,700 kg‐polymer/mol‐Ti·h) and efficient comonomer incorporation in ethylene copolymerization with tetracyclododecene (TCD) in the presence of methylaluminoxane, and the catalytic activity by 1 increased even at 60 °C. The resultant polymers are high molecular weight amorphous poly(ethylene‐co‐TCD)s (Mn = 5.88–7.03 × 105) with uniform compositions (with high Tg values, 108–203 °C); a linear relationship between Tg values and the TCD contents was observed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2662–2667  相似文献   

16.
The catalyst system i‐Pr(Cp)(9‐Flu)ZrCl2/methylaluminoxane was used for the synthesis of random syndiotactic copolymers of propylene with 1‐hexene, 1‐dodecene, and 1‐octadecene as comonomers. An investigation of the microstructure by 13C NMR spectroscopy revealed that the stereoregularity of the copolymers decreased because of an increase in skipped insertions in the presence of the higher 1‐olefin. The melting temperature of the copolymers, as measured by differential scanning calorimetry (DSC), decreased linearly with increasing comonomer content independently of the comonomer nature. During the DSC heating cycle, an exothermic peak indicating a crystallization process was observed. The decrease in the crystallization temperature with higher 1‐olefin content, measured by crystallization analysis fractionation, indicated a small but significant dependence on the nature of the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 128–140, 2002  相似文献   

17.
A novel polymer-supported titanium-based catalyst shows high activity and nondecaying kinetic profiles for ethylene polymerization. The presence of 1-hexene comonomer drastically increases the catalyst activity, exhibiting a similarity to the MgCl2-supported catalysts. However, the nondecaying kinetic profiles of copolymerization distinguish this catalyst from the latter. Infrared analysis indicates that the transition metals were immobilized on the polymer support via functional groups. The effects of polymerization conditions on catalyst activity have been assessed. Characterization of the resulting polymer product by means of 13C-NMR, DSC, and SEM demonstrates a branch-free structure with high melting point, high crystallinity, and high molecular weight for the ethylene homopolymer. The reactivity ratios of ethylene-1-hexene copolymerization are evaluated from 13C-NMR analysis data. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Monomer transport and polymerization kinetics are two key phenomena in olefin polymerization with heterogeneous transition metal catalysts. To have a better understanding of these interrelated kinetics and diffusion phenomena, a quantitative calculation of the monomer diffusion directly from experimental study is essential. In this work, a novel temperature-perturbation technique is developed to systematically study the kinetic and diffusion limitations in catalyzed gas phase olefin polymerization. A physical model of the particle growth mechanism as well as its mathematical representation is presented and the diffusion limitations occurring in the system at high temperature are characterized and quantitatively analyzed. Finally, the practical implications of the results of this study on the operation of industrial scale polyolefin reactors are examined. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2075-2096, 1997  相似文献   

19.
The polymerization of 4-vinyl-1-cyclohexene (4VCHE) with Ziegler–Natta catalysts was studied. The polymerization of 4VCHE by the vinyl group took place with TiCl3–aluminum alkyls catalysts, while vinylene group of 4VCHE did not participate in the reaction, but it affected the polymerization rate of 4VCHE. The effects of aluminum alkyl and type of TiCl3 on the polymerization were examined. The overall activation energy for the polymerization was estimated to be 41.9kJ/mol. Monomer-isomerization copolymerization of 4VCHE and trans-2-butene occurred with the TiCl3-(i-C4H9)3Al catalyst to give copolymers consisting of 4VCHE and 1-butene units.  相似文献   

20.
High molecular weight polymers such as poly (α‐olefin)s play a key role as drag‐reducing agents which are commonly used in pipeline industry. Heterogeneous Ziegler–Natta catalyst system of MgCl2.nEtOH/TiCl4/donor was prepared using a spherical MgCl2 support and utilized in synthesis of poly(1‐hexene)s with a viscosity average molecular weight (Mv) up to 3.5 × 103 kDa. The influence of effective parameters including Al/Ti ratio, polymerization temperature, monomer concentration, effect of alkylaluminus type on the productivity, and molecular weight of the products was evaluated. It was suggested that the reactivity of the Al‐R group and the bulkiness of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different polymerization time and temperatures, affecting the catalyst activity and Mv of polymers. Moreover, bulk polymerization method leads to higher viscosity average molecular weights, revealing the remarkable effect of polymerization method on the chain microstructure. Fourier transform infrared, 13C Nuclear magnetic resonance spectra, and DSC thermogram of the prepared polymers confirmed the formation of poly(1‐hexene). The properties of the polymers measured by vortex test showed that these polymers could be used as a drag‐reducing agent. Drag‐reducing behaviors of the polymers exhibited a dependence on the Mv of the obtained polymers that was changed by variation in polymerization parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号