首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monomeric friction factors, Ξ, for polystyrene (PS), polyisoprene (PI), and a polystyrene–polyisoprene (SI) diblock copolymer have been determined as a function of temperature in four poly(styrene-b-isoprene-b-styrene-b-isoprene) tetrablock copolymer matrices. The Rouse model has been used to calculate the friction factors from tracer diffusion coefficients measured by forced Rayleigh scattering. Within the experimental temperature range the tetrablock copolymers are disordered, allowing for measurement of the diffusion coefficient in matrices with average compositions determined by the tetrablock copolymers (23, 42, 60, and 80% styrene by volume). Remarkably, for a given matrix composition the styrene and isoprene friction factors are essentially equivalent. Furthermore, at a constant interval from the system glass transition temperature, Tg, all of the friction factors (obtained from homopolymer, diblock copolymer, and tetrablock copolymer dynamics) agree to within an order of magnitude. This is in marked contrast to results for miscible polymer blends, where the individual components generally have distinct composition dependences and magnitudes at constant TTg. The homopolymer friction factors in the tetrablock matrices were systematically slightly higher than those of the diblock, which in turn were slightly higher than those of the homopolymers in their respective melts, when all compared at constant TTg. This is attributed to the local spatial distribution of styrene and isoprene segments in the tetrablocks, which presents a nonuniform free energy surface to the tracer molecules. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3079–3086, 1998  相似文献   

2.
Forced Rayleigh scattering was used to measure the tracer diffusion coefficients of the photochromic dye tetrathioindigo (TTI) and a 1,4‐polyisoprene (PI) homopolymer (8000 g/mol) in a poly(styrene‐b‐isoprene) (SI) diblock copolymer matrix that formed a bicontinuous gyroid microstructure. The diblock copolymer contained 63% polystyrene (PS) by volume and had a total molecular weight of 21,300 g/mol. Rheology and small‐angle X‐ray scattering confirmed that the diblock copolymer microphase‐separated into the bicontinuous gyroid over the temperature range 60–230 °C, where the sample disordered. For both the TTI and PI tracers, two distinct modes of transport were observed. The faster mode displayed a temperature dependence consistent with diffusion within a PI matrix, whereas the slower mode had a temperature dependence more similar to diffusion within PS. The fast diffusivities were both over an order of magnitude lower than in a corresponding PI homopolymer matrix. For TTI, this was attributed to the preferential selectivity of the dye for PS and, therefore, an averaging of the mobility between the PS and PI domains. The slow mode was consistent with a small fraction of the TTI dye molecules becoming trapped within the much slower PS domains. For the PI tracer, the reduction in the diffusion coefficient for the fast mode was attributed to a combination of the tortuosity of the struts, the suppression of constraint release within the diblock matrix, and additional friction due to the presence of some styrene segments within the PI domains. The inevitable presence of grain boundaries or defects within the matrix interrupted the percolation of the PI struts, thereby forcing some of the PI tracers to diffuse through PS. Consequently, the slow mode was attributed to the diffusion through these defects, where the PI diffusion was retarded by both the increased segmental friction and the thermodynamic barrier to entering the PS domains. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 843–859, 2001  相似文献   

3.
Symmetric polystyrene (PS)–poly(dimethylsiloxane) (PDMS) diblock copolymers were mixed into a 20% dispersion of PDMS in PS. The effect of adding the block copolymer on the blend morphology was examined as a function of the block copolymer molecular weight (Mn,bcp), concentration, and viscosity ratio (ηr). When blended together with the PS and PDMS homopolymers, most of the block copolymer appeared as micelles in the PS matrix. Even when the copolymer was preblended into the PDMS dispersed phase, block copolymer micelles in the PS matrix phase were observed with transmission electron microscopy after mixing. Adding 16 kg/mol PS–PDMS block copolymer dramatically reduced the PDMS particle size, but the morphology, as examined by scanning electron microscopy, was unstable upon thermal annealing. Adding 156 kg/mol block copolymer yielded particle sizes similar to those of blends with 40 or 83 kg/mol block copolymers, but only blends with 83 kg/mol block copolymer were stable after annealing. For a given value of Mn,bcp, a minimum PDMS particle size was observed when ηr ~ 1. When ηr = 2.6, thermally stable, submicrometer particles as small as 0.6 μm were observed after the addition of only 3% PS–PDMS diblock (number‐average molecular weight = 83 kg/mol) to the blend. As little as 1% 83 kg/mol block copolymer was sufficient to stabilize a 20% dispersion of 1.1‐μm PDMS particles in PS. Droplet size reduction was attributed to the prevention of coalescence caused by small amounts of block copolymer at the interface. The conditions under which block copolymer interfacial adsorption and interpenetration were facilitated were explained with Leibler's brush theory. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 346–357, 2002; DOI 10.1002/polb.10098  相似文献   

4.
Recent experimental evidence and theoretical predictions indicate that binary blends of relatively monodisperse diblock copolymers remain miscible if the molecular weight disparity of the constituent copolymers is not too great. In this work, we examine the effect of moderate copolymer polydispersity on both the microstructural characteristics and phase behavior of blends prepared from four compositionally symmetric poly(styrene-b-isoprene) (SI) diblock copolymers ranging in polydispersity (w/n) from 1.02 to 1.30. Blend periodicities, measured by small-angle X-ray scattering, compare favorably with predictions from a strong segregation theory proposed for lamellar diblock copolymer blends composed of monomolecular copolymers. Transmission electron microscopy, employed to ascertain the real-space morphological characteristics of these blends, reveals that a lamellar → cylindrical transition occurs in macrophase-separated blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2653–2658, 1997  相似文献   

5.
“Block‐random” copolymers—where one or more blocks are themselves random copolymers—offer a flexible modification to the usual block copolymer architecture. For example, in a poly(A)‐poly(A‐ran‐B) diblock consisting of monomer units A and B, the interblock segregation strength can be continuously tuned through the B content of the random block, allowing the design of block copolymers with accessible order‐disorder transitions at arbitrarily high molecular weights. Moreover, the development of controlled radical polymerizations has greatly expanded the palette of accessible monomer units A and B, including units with strongly interacting functional groups. We synthesize a range of copolymers consisting of styrene (S) and acetoxystyrene (AS) units, including copolymers where one block is P(S‐ran‐AS), through nitroxide‐mediated radical polymerization. At sufficiently high molecular weights, near‐symmetric PS‐PAS diblocks show well‐ordered lamellar morphologies, while dilution of the repulsive S‐AS interactions in PS‐P(S‐ran‐AS) diblocks yields a phase‐mixed morphology. Cleavage of a sufficient fraction of the AS units in a phase‐mixed PS‐P(S‐ran‐AS) diblock to hydrogen‐bonding hydroxystyrene (HS) units yields, in turn, a microphase‐separated melt. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2106–2113, 2009.  相似文献   

6.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

7.
Well‐defined ω‐cholesteryl poly(n‐hexyl isocyanate) (PHIC–Chol), as well as diblock copolymers of n‐hexyl isocyanate (HIC) with styrene, PS‐b‐PHIC [PS = polystyrene; PHIC = poly(n‐hexyl isocyanate)], and triblock terpolymers with styrene and isoprene, PS‐b‐PI‐b‐PHIC and PI‐b‐PS‐b‐PHIC (PI = polyisoprene), were synthesized with CpTiCl2(OR) (R = cholesteryl group, PS, or PS‐b‐PI) complexes. The synthetic strategy involved the reaction of the precursor complex CpTiCl3 with cholesterol or the suitable ω‐hydroxy homopolymer or block copolymer, followed by the polymerization of HIC. The ω‐hydroxy polymers were prepared by the anionic polymerization of the corresponding monomers and the reaction of the living chains with ethylene oxide. The reaction sequence was monitored by size exclusion chromatography, and the final products were characterized by size exclusion chromatography (light scattering and refractive‐index detectors), nuclear magnetic resonance spectroscopy, and, in the case of PHIC–Chol, differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6503–6514, 2005  相似文献   

8.
Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring‐opening polymerization (ROP) of L ‐lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well‐defined PLLA with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Based on the above results, PS‐b‐PLLA, PI‐b‐PLLA, PEO‐b‐PLLA block copolymers, and a PS‐b‐PI‐b‐PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH‐end‐functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH‐functionalized polymers with CpTiCl3 to give the corresponding Ti‐macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA‐g‐PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2‐hydroxy ethyl methacrylate, HEMA, to give the Ti‐HEMA‐catalyst, (b) the ROP of LLA to afford a PLLA methacrylic‐macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two‐angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092–1103, 2010  相似文献   

9.
Amphiphilic diblock copolymers of polyvinyl alcohol (PVA) and polystyrene (PS), which are very difficult to prepare by common polymerization methods, have been obtained by initiation of the polymerization of styrene and vinyl acetate successively, followed by hydrolysis, using the ethanolamine–benzophenone (BP) charge-transfer complex (CTC). The effects of solvents, concentration of monomer, BP, ethanolamine, and PS prepolymer, with a reactive imino group (PSa), on the photo-induced charge-transfer polymerization (CTP) of St and block copolymerization of VAc are discussed. The copolymer of PS-b-PVAc and the hydrolyzed product, PS-b-PVA, were characterized by FTIR, NMR, and GPC in detail. The effect of PS chain length on the crystallization of PVA was described. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 109–115, 1998  相似文献   

10.
Solution properties for random and diblock copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA) have been measured by dynamic and total intensity light scattering in solvents of differing quality. The results are compared with the corresponding properties for PS and PMMA homopolymers of similar molecular weight, in order to determine if interactions between unlike monomers are significant. The hydrodynamic radius (Rh) and diffusion second virial coefficient (kd) for the random copolymer are found to be larger than the corresponding values for the homopolymers in a solvent which is near-theta for the two homopolymers, whereas no such effect is observed for the block copolymer. This suggests that most intrachain interactions occur a relatively short distance along the chain backbone. In a mutual good solvent Rh and kd of the random copolymer are comparable to the average of the values for the homopolymers, indicating that in a good solvent monomer/solvent interactions dominate over monomer/monomer interactions. For an isolated diblock copolymer in a mutual good solvent, there is no evidence that interactions between unlike monomers lead to additional expansion of the entire molecule, as measured by Rh, nor expansion of the individual blocks as probed by light scattering with one block optically masked. However, at low but finite concentration there is evidence (the coefficients of the binary interaction terms in the viscosity and the mutual diffusion coefficient, and the second and third virial coefficients) that a weak ordering effect may exist in block copolymer solutions, far from the conditions where microphase separation occurs. Finally, measurements of ternary polymer-polymer-solvent solutions show no dependence on monomer composition or monomer distribution for the tracer diffusion of probe PS-PMMA copolymers in a PMMA/toluene matrix. This indicate that the frictional interaction is largely unaffected by interactions between unlike monomers. However, there is evidence that the thermodynamic interaction is more unfavorable between a random copolymer and the homopolymer matrix than between a diblock and the matrix. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

12.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   

13.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

14.
A series of narrow molecular weight distribution (MWD) polystyrene‐b‐poly[methyl(3,3,3‐trifluoropropyl)siloxane] (PS‐b‐PMTFPS) diblock copolymers were synthesized by the sequential anionic polymerization of styrene and trans‐1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane in tetrahydrofuran (THF) with n‐butyllithium as the initiator. The diblock copolymers had narrow MWDs ranging from 1.06 to 1.20 and number‐average molecular weights ranging from 8.2 × 103 to 37.1 × 103. To investigate the properties of the copolymers, diblock copolymers with different weight fractions of poly[methyl(3,3,3‐trifluoropropyl)siloxane] (15.4–78.8 wt %) were prepared. The compositions of the diblock copolymers were calculated from the characteristic proton integrals of 1H NMR spectra. For the anionic ring‐opening polymerization (ROP) of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3) initiated by polystyryllithium, high monomer concentrations could give high polymer yields and good control of MWDs when THF was used as the polymerization solvent. It was speculated that good control of the block copolymerization under the condition of high monomer concentrations was due to the slowdown of the anionic ROP rate of F3 and the steric hindrance of the polystyrene precursors. There was enough time to terminate the ROP of F3 when the polymer yield was high, and good control of block copolymerization could be achieved thereafter. The thermal properties (differential scanning calorimetry and thermogravimetric analysis) were also investigated for the PS‐b‐PMTFPS diblock copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4431–4438, 2005  相似文献   

15.
Amphiphilic diblock copolymers were prepared by the living cationic polymerization of vinyl ethers in the presence of added bases, and their selective solvent‐induced physical gelation behavior was investigated. The block copolymerization of 2‐phenoxyethyl vinyl ether (PhOVE) and 2‐methoxyethyl vinyl ether (MOVE) was carried out in the presence of ethyl acetate with Et1.5AlCl1.5 in toluene at 0 °C. Despite the rate difference, diblock copolymers with a very narrow molecular weight distribution were obtained, quantitatively. By adding the selective solvent, water, to the acetone solution of the diblock copolymer, PhOVE200b‐MOVE400, physical gelation occurred suddenly and the system ceased to flow, maintaining transparency. Viscoelastic measurements and transmission electron microscopic observations were performed to examine the characteristic gelation behavior and structure of the obtained gels. Various gelation conditions and physical gelation by other amphiphilic block copolymers were also designed on the basis of the solubility of each block segment. Further, new forms of physical gelation, accompanied by the solubilization of immiscible organic compounds, were achieved using similar diblock copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3190–3197, 2001  相似文献   

16.
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002  相似文献   

17.
Six well defined PS‐b‐PB1,2 diblock copolymers (PS: polystyrene and PB: polybutadiene) with almost 100% of 1,2 microstructure for the PB segment were synthesized. Size exclusion chromatography (SEC), membrane osmometry (MO) and proton nuclear magnetic resonance spectroscopy (1H NMR) were used for verification of the molecular characteristics and the 100% ‐1,2 addition for the PB blocks. Modification with heptanoyl or pentadecafluorooctanoyl chloride was accomplished via hydroboration and subsequent oxidation, leading to hydroxylated PB blocks and was verified with 1H NMR and Fourier transform infrared (FTIR) spectroscopy. Only two samples were modified with both organic acid chloride derivatives. Structural characterization was accomplished via transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) in all cases. The self‐assembly was more evident in the modified copolymers with the corresponding halides due to the increase of the molecular weight of the modified PB block. Taking into consideration the χN values in each case and comparing the results with those of PS‐b‐PI copolymers already reported in the literature the discrepancies with the theoretical predictions are very small or minimal. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   

19.
Blends of self‐assembling polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) diblock‐copolymers and poly(4‐vinyl pyridine) (P4VP) homopolymers were used to fabricate isoporous and nanoporous films. Block copolymers (BCP) self‐assembled into a structure where the minority component forms very uniform cylinders, while homopolymers, resided in the core of the cylinders. Selective removal of the homopolymers by ethanol immersion led to the formation of well‐ordered pores. In films without added homopolymer, just immersion in ethanol and subsequent swelling of the P4VP blocks was found to be sufficient to create pores. Pore sizes were tuned between 10 and 50 nm by simply varying the homopolymer content and the molecular weight of the block‐copolymer. Uniformity was lost when the average pore size exceeded 30 nm because of macrophase separation. However, preparation of films from low MW diblock copolymers showed that it is possible to have excellent pore size control and a high porosity, while retaining a low pore size distribution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1568–1579  相似文献   

20.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号