首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 8 毫秒
1.
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.  相似文献   

2.
We formulate and analyze a novel numerical method for solving a time‐fractional Fokker–Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534–1550, 2015  相似文献   

3.
We use the generalized L1 approximation for the Caputo fractional derivative, the second-order fractional quadrature rule approximation for the integral term, and a classical Crank-Nicolson alternating direction implicit (ADI) scheme for the time discretization of a new two-dimensional (2D) fractional integro-differential equation, in combination with a space discretization by an arbitrary-order orthogonal spline collocation (OSC) method. The stability of a Crank-Nicolson ADI OSC scheme is rigourously established, and error estimate is also derived. Finally, some numerical tests are given.  相似文献   

4.
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated.  相似文献   

5.
In this paper, discrete-time orthogonal spline collocation schemes are proposed for the nonlinear Schrödinger equation with wave operator. These schemes are constructed by using orthogonal spline collocation approaches combined with finite difference methods. The conservative property, the convergence, and the stability of these methods are theoretically analyzed and also verified by extensive numerical experiments. In addition, some interesting phenomena which require further theoretical analysis are discussed numerically.  相似文献   

6.
This paper is devoted to analyzing the physical structures of nonlinear dispersive variants of the Benjamin–Bona–Mahony equation. It is found that these generalized forms give rise to compactons solutions: solitons with the absence of infinite tails, solitons: nonlinear localized waves of infinite support, solitary patterns solutions having infinite slopes or cusps, and plane periodic solutions. It is also found that the qualitative change in the physical structure of solutions depends strongly on whether the exponents of the wave function u(xt) whether it is positive or negative, and on the speed c of the traveling wave as well.  相似文献   

7.
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples.  相似文献   

8.
L‐error estimates for B‐spline Galerkin finite element solution of the Rosenau–Burgers equation are considered. The semidiscrete B‐spline Galerkin scheme is studied using appropriate projections. For fully discrete B‐spline Galerkin scheme, we consider the Crank–Nicolson method and analyze the corresponding error estimates in time. Numerical experiments are given to demonstrate validity and order of accuracy of the proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 877–895, 2016  相似文献   

9.
In this work, numerical solution of nonlinear modified Burgers equation is obtained using an improvised collocation technique with cubic B‐spline as basis functions. In this technique, cubic B‐splines are forced to satisfy the interpolatory condition along with some specific end conditions. Crank–Nicolson scheme is used for temporal domain and improvised cubic B‐spline collocation method is used for spatial domain discretization. Quasilinearization process is followed to tackle the nonlinear term in the equation. Convergence of the technique is established to be of order O(h4 + Δt2) . Stability of the technique is examined using von‐Neumann analysis. L2 and L error norms are calculated and are compared with those available in existing works. Results are found to be better and the technique is computationally efficient, which is shown by calculating CPU time.  相似文献   

10.
We consider a discrete‐time orthogonal spline collocation scheme for solving Schrödinger equation with wave operator. The scheme is proposed recently by Wang et al. (J Comput Appl Math 235 (2011), 1993–2005) and is showed to have high‐order convergence rate when a parameter θ in the scheme is not less than $\frac{1}{4}$. In this article, we show that the result can be extended to include $\theta\in(0,\frac{1}{4})$ under an assumption. Numerical example is given to justify the theoretical result. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
A posteriori error estimates for semidiscrete finite element methods for a nonlinear Sobolev equation are considered. The error estimates are obtained by solving local nonlinear or linear pseudo‐parabolic equations for corrections to the solution on each element. The ratios of these estimates and the true errors are proved to converge to 1, implying that the estimates can be used as indicators in adaptive schemes for the problem. Numerical results underline our theoretical results. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

12.
In this paper, we first establish the Crank–Nicolson collocation spectral (CNCS) method for two‐dimensional (2D) viscoelastic wave equation by means of the Chebyshev polynomials. And then, we analyze the existence, uniqueness, stability, and convergence of the CNCS solutions. Finally, we use some numerical experiments to verify the correctness of theoretical analysis. This implies that the CNCS model is very effective for solving the 2D viscoelastic wave equations.  相似文献   

13.
We present a numerical scheme for Landau–Lifshitz–Gilbert equation coupled with the equation of elastodynamics. The considered physical model describes the behaviour of ferromagnetic materials when magnetomechanical coupling is taken into account. The time‐discretization is based on the backward Euler method with projection. In the numerical approximation, the two equations are decoupled by a suitable linearization in order to solve the magnetic and mechanic part separately. The resulting semi‐implicit scheme is linear and allows larger time‐steps than explicit methods. We prove stability and error estimates for the presented time discretization in 2D. Finally, we test the accuracy of the scheme on an academic numerical example with known exact solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we give some numerical techniques and error estimates using web‐spline based mesh‐free finite element method for the heat equation and the time‐dependent Navier–Stokes equations on bounded domains. The web‐spline method uses weighted extended B‐splines on a regular grid as basis functions and does not require any grid generation. We demonstrate the method by providing numerical results for the Poisson's and stationary Stokes equation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
Numerical scheme based on quartic B-spline collocation method is designed for the numerical solution of modified regularized long wave (MRLW) equation. Unconditional stability is proved using Von-Neumann approach. Performance of the method is checked through numerical examples. Using error norms L2 and L and conservative properties of mass, momentum and energy, accuracy and efficiency of the new method is established through comparison with the existing techniques.  相似文献   

16.
This paper is concerned to derive the main theorem of spectral relationships of Volterra–Fredholm integral equation (V‐FIE) of the first kind in the space L2[?1,1]×C[0,T], ?1?x?1, 0?t?T<1. The Fredholm integral (FI) term is considered in position and its kernel takes a logarithmic form multiplying by a continuous function. While Volterra integral (VI) term in time with a positive continuous kernel. Many important special and new cases can be established from the main theorem. Moreover, we use it to solve V‐FIE of the second kind in the same space. The numerical results are computed and the error is calculated using Maple 12. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The Lamm equation is a fundamental differential equation in analytical ultracentrifugation, for describing the transport of solutes in an ultracentrifuge cell. In this article, we present a characteristic finite element method with local mesh refinements for solving the Lamm equation. The numerical method is mass‐conservative by design and allows relatively large time steps to be used. Numerical experiments indicate that the numerical solutions are oscillation‐free in the region near the cell bottom, where mass build up and large concentration gradients occur. Positivity of solutions is also well kept. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

18.
In this paper, firstly we show that the determining equations of the (1+1) dimension nonlinear differential equation with arbitrary order for the nonclassical method can be derived by the compatibility between the original equation and the invariant surface condition. Then we generalize this result to the system of the (m+1) dimension differential equations. The nonlinear Klein–Gordon equation, the (2+1)-dimensional Boussinesq equation and the generalized Nizhnik–Novikov–Veselov equation serve as examples illustrating this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号