首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) interpenetrating polymer networks (PMPS–PMMA IPNs) were prepared by in situ sequential condensation of poly(methylphenylsiloxane) with tetramethyl orthosilicate and polymerization of methyl methacrylate. PMPS–PMMA IPNs were characterized by infrared (IR), differential scanning calorimetry (DSC), and 29Si and 13C nuclear magnetic resonance (NMR). The mobility of PMPS segments in IPNs, investigated by proton spin–spin relaxation T2 measurements, is seriously restricted. The PMPS networks have influence on the average activation energy Ea,av of MMA segments in thermal degradation at initial conversion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1717–1724, 1999  相似文献   

2.
An amphiphilic graft copolymer was prepared by transesterification of poly(2-ethylhexyl acrylate-co-methyl methacrylate) with poly(ethylene glycol) monomethyl ether (MPEG2000). The grafting reaction was performed in melt at 155°C. The purified graft copolymer was blended into poly(methyl methacrylate) in concentrations of 1.5-30 wt %, either by mixing in chloroform solution or by melt mixing by means of a twin-screw extruder or a Brabender blender. Films of the blends were prepared by solution casting onto glass plates or by hot pressing between polished Al plates. At concentrations up to 20% of the graft copolymer homogeneous blends were obtained. At higher concentrations the blends were heterogeneous, and side-chain crystallinity was detectable by DSC analysis. The surface properties of the films were studied by measurements of water contact angles. The surface accumulation of the graft copolymer was demonstrated as a large increase in the wetting angle hysteresis, and found to depend on the procedure for film preparation as well as the casting substrate. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Poly(methyl methacrylate)–silica hybrid materials (PMMA–SiO2) were prepared by in situ polycondensation of alkoxysilane in the presence of trialkoxysilane‐functional PMMA. Infrared, differential scanning calorimetry, 29Si and 13C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis were used to study the PMMA–SiO2 hybrids. The effects of the content and kind of the alkoxysilane on the dynamics and stability of the PMMA–SiO2 hybrids were investigated in this study.The dynamics of SiO2within hybrids were investigated with 29Si–1H cross‐polarization. The spin‐diffusion path length was on a nanometer scale estimated with the spin–lattice relaxation time in the rotating frame (T). The apparent activation energies for the degradation of the hybrids under air and nitrogen were evaluated by the van Krevelen method. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1972–1980, 2000  相似文献   

4.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

5.
Poly(imide–silica) hybrid materials with covalent bonds were prepared by (3-aminopropyl)methyldiethoxysilane (APrMDEOS) terminated amic acid, water, and tetramethoxysilane (TMOS) via a sol–gel technique. Infrared (IR), 29Si and 13C CP/MAS nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA) were used to study hybrids containing various proportions of TMOS and hydrolysis ratios. The microstructure and chain mobility of hybrids were investigated by proton spin–spin relaxation T2 measurements. The apparent activation energy Ea for degradation of hybrids in air was studied by the van Krevelen method. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2275–2284, 1999  相似文献   

6.
The thermal degradation behaviour of poly(ethyl methacrylate) homopolymers and poly(ethyl methacrylate) and poly(ethyl acrylate) copolymers synthesized by using the benzoyl peroxide-di-methyl aniline redox pair at different temperatures (18–35C) was investigated. Contrary to some reports in the literature, the thermal degradation of PEMA was observed to take place in multi steps. These are assigned to be loss of labile end groups, side chain scission, anhydride formation and main chain degradation steps. Dominating chemical formations at the end of these steps were characterized by FTIR spectroscopy.The homopolymer samples synthesized at 18C showed a greater thermal stability against degradation. Copolymerization with small amounts of ethyl acrylate was observed to impart thermal stability to PEMA by stabilizing mainly the end groups against degradations.  相似文献   

7.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

9.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

10.
The emulsion polymerization of methyl methacrylate in the presence of chitosan with potassium persulfate (KPS) as an initiator was examined in a previous article. The free radicals that dissociated from KPS not only initiated the polymerization but also degraded the chitosan molecules. Therefore, in addition to its role as a cationic surfactant, chitosan also participated in the polymerization reaction. When the polymerization was complete, the latex polymer consisted of poly(methyl methacrylate) (PMMA) homopolymer and chitosan–PMMA copolymer. In this article, the structures and thermal properties of latex polymers are examined. Gel permeation chromatography was used to measure the molecular weight of the PMMA homopolymer, with the copolymer composition determined by an elemental analyzer. Scanning and transmission electronic microscopes were used to measure the size of latex particles from different reaction systems. The surface charges of latex particles at several different pH values were determined by the measurement of the ζ potential. All results agreed with the reaction mechanism proposed in the previous article. Finally, the presence of rigid chitosan increased the glass-transition temperature of the final latex polymers. Thermogravimetric analysis showed that the degradation behavior of latex polymers was similar to the unzipping mechanism of PMMA, yet the presence of chitosan units hindered the unzipping of the main chains in chitosan–PMMA copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1646–1655, 2001  相似文献   

11.
An investigation of the degradation of poly(methyl methacrylate) in the case of negative thixotropy of its solutions in tricresyl phosphate showed that the number of polymer bonds broken by flow as expressed through the decrease of molecular weight in the course of the effect is determined by shear energy imposed on the system, irrespective of the velocity gradient and temperature used.  相似文献   

12.
The molecular weight distribution change has been measured for the photoresist poly(methyl methacrylate) [PMMA] after in-vacuo exposure to monochromatic soft x-rays from the Canadian Synchrotron Radiation Facility [CSRF]. The experimental changes in the mo-lecular weight distribations derived from gel permeation chromatography [GPC], were compared to a simple Monte Carlo simulation model that assumes random main chain scission. Using this model a scission radiation chemical yield of G(S) = 1.28± 0.10 at room temperature was found to give the best fit at a photon energy of 621 eV. This value is similar to values reported previously in the literature using electron beam and γ-ray sources, but significantly larger than those reported for fast neutrons, α-particles, or energetically charged particles. It was found that in this soft x-ray energy regime, that degradation of PMMA involves primarily a random scission process of the main chain. The results of a least-squares fit of this soft x-ray G(S) data and all available literature values from other radiation sources, to the linear energy transfer [LET] dE/dx are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The thermal degradation of waste poly(methyl methacrylate) (PMMA) in the presence of ferric sulfate, cupric sulfate, aluminum sulfate, magnesium sulfate, and barium sulfate was studied by using thermogravimetric analysis (TGA) in air atmosphere. The values of apparent activation energies (Ea) calculated by Flynn-Wall-Ozawa method were found to be in the order of PMMA + Fe2(SO4)3 < PMMA + Al2(SO4)3 < PMMA + MgSO4 < PMMA + CuSO4 < PMMA + BaSO4 < PMMA. The mechanism of catalytic degradation of PMMA in presence of the sulfates was discussed and the results showed that the catalytic effects of sulfates have a relationship with the acidity of their respective metal ions.  相似文献   

14.
Azo group-containing polydimethylsiloxanes (PDMS–ACP), macroazoinitiators, were prepared by polycondensation reaction of 4,4′-azobis-4-cyanopentanoyl chloride (ACPC) with hydroxybutyl-terminated polydimethylsiloxane (PDMS) of varying molecular weights. The activation energy (Ea), activation enthalpy (ΔH), and activation entropy (ΔS) of the thermodecomposition of PDMS-ACP in toluene increased with increase in poly-dimethyl-siloxane chain length (SCL) in PDMS moieties, while the activation free energy (ΔG) was independent on the SCL. The polydimethylsiloxane-poly(methyl methacrylate) block copolymers (PDMS-b-PMMA) were prepared by the use of PDMS-ACP macroazoinitiators, and they were characterized by 1H-, 29Si-, and 13C-nuclear magnetic resonance (NMR) spectroscopies. The microstructure and morphology of copolymers were investigated by proton spin–spin relaxation measurements and scanning electron microscopy (SEM). © 1996 John Wiley & Sons, Inc.  相似文献   

15.
16.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

17.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

18.
Thermal oxidation of poly(ethylene oxide) (PEO) and its blends with poly(methyl methacrylate) (PMMA) were studied using oxygen uptake measurements. The rates of oxidation and maximum oxygen uptake contents were reduced as the content of PMMA was increased in the blends. The results were indicative of a stabilizing effect by PMMA on the oxidation of PEO. The oxidation reaction at 140°C was stopped at various stages and PMMA was separated from PEO and its molecular weights were measured by gel permeation chromatography (GPC). The decrease in the number-average molecular weight of PMMA was larger as the content of PEO increased in the blends. The visual appearance of the films suggested that phase separation did not occur after thermal oxidation. The activation energy for the rates of oxidation in the blends was slightly increased compared to pure PEO. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

20.
Poly(methyl methacrylate) with a thiophene end group having narrow polydispersity was prepared by the Atom Transfer Radical Polymerization (ATRP) technique. Subsequently, electrically conducting block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole were synthesized by using p-toluene sulfonic acid and sodium dodecyl sulfate as the supporting electrolytes via constant potential electrolysis. Characterization of the block copolymers were performed by CV, FTIR, SEM, TGA, and DSC analyses. Electrical conductivities were evaluated by the four-probe technique. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4218–4225, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号