首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of a variable duty cycle pulsed RF plasma is shown to provide film chemistry control during polymerization of saturated (CH2Br2) and unsaturated (CH2=CHCH2Br) bromine containing monomers. With both monomers, the degree of bromine atom retention in the films is observed to increase in a progressive fashion as the RF duty cycle employed during plasma polymerization is decreased. The film deposition rates, when expressed in terms of thickness per Joule of RF energy input, increase rapidly as the RF duty cycles are reduced. Additionally, the film morphology is observed to become increasingly smooth with decreasing RF duty cycles during deposition, as illustrated with the allyl bromide monomer. The film chemistry controllability of this study is demonstrated with monomers possessing the relatively weak C-Br bond. As such, the present work represents an important extension of the pulsed plasma polymerization approach to include retention of a labile bond during film formation. The introduction of reactive surface functional groups, at controlled densities, provides additional molecular tailoring possibilities via subsequent chemical derivatization processes.  相似文献   

2.
Plasma polymerization of allylamine is performed both in continuous wave and pulsed mode. Chemical derivatization is applied to determine primary and secondary amine concentration. Primary amines are efficiently formed, but secondary amines are more abundant. A polymerization mechanism is proposed to account for the difference in amine content obtained from comparison between continuous wave and pulsed mode plasma polymerization. The AFM measurements performed on ultrathin (1-10 nm) plasma polymers confirm the continuity of films and that the film growth on silicon occurs via a layer-by-layer mechanism because no islandlike structures were detected.  相似文献   

3.
Two synthetic routes to polymeric 1‐imino pyridinium ylides as new photoreactive polymeric architectures were investigated. In the first approach, polymerization of newly synthesized 1‐imino pyridinium ylide containing monomers yielding their polymeric analogues was achieved by free radical polymerization. Alternatively, reactive precursor polymers were synthesized and converted into the respective 1‐imino pyridinium ylide polymers by polymer analogous reactions on reactive precursor polymers. Quantitative conversion of the reactive groups was achieved with pentafluorophenyl ester containing polymers and newly synthesized photoreactive amines as well as by the reaction of poly(4‐vinylbenzoyl azide) with a photoreactive alcohol. The polymers obtained by both routes were examined regarding their photoreaction products and kinetics in solution as well as in thin polymer films. Contact angle measurements of water on the polymer films before and after irradiation showed dramatic changes in the hydrophilicity of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 832–844, 2010  相似文献   

4.
The polymerization of aniline under continuous and pulsed RF-plasma conditions is studied using the same plasma reactor. The effects of input power, on and off-times, frequency and duty cycle variations on the growth kinetics and on the chemical structure of the obtained layers are examined. The chemical structure of the films is characterized using Fourier Transform Infra-Red, X-ray photoelectron and UltraViolet?CVisible spectroscopies. The thickness of the films is determined by profilometry. The results show a strong dependence of film chemistry and deposition rates on the discharge power and on-time. The film deposited by pulsed plasma grows mainly during the plasma-on period. Furthermore, this work shows that the retention of aromatic rings can be evaluated by Fourier transform infrared analysis whereas oxidation degree of plasma polyaniline can be determined by X-ray photoelectron and UV?CVis spectroscopies.  相似文献   

5.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

6.
This study demonstrates that the gradual and slow production of initiating radicals (i.e., hydroxyl radicals here) is the key point for the synthesis of ultra‐high molecular weight (UHMW) polymers via controlled radical polymerization. Hydrogen peroxide (H2O2) and ferrous iron (Fe2+) react via Fenton redox chemistry to initiate RAFT polymerization. This work presents two enzymatic‐mediated (i.e., Bio‐Fenton‐RAFT and Semi Bio‐Fenton‐RAFT) and one syringe pump‐driven Fenton‐RAFT polymerization processes in which the initiating radicals are carefully and gradually dosed into the reaction solution. The “livingness” of the synthesized UHMW polymers is demonstrated by chain extension and aminolysis experiments. Zimm plots obtained from static light scattering (SLS) technique are used to characterize the UHMW polymers. This Fenton‐RAFT polymerization provides access to polymers of unprecedented UHMW (Mw ~ 20 × 106 g mol?1) with potential in diverse applications. The UHMW polymers made via the controlled Fenton‐RAFT polymerization by using a syringe pump shows that it is possible to produce such materials through an easy‐to‐set up and scalable process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1922–1930  相似文献   

7.
Glass‐like and structural first‐order phase transitions are investigated in polytetrafluoroethylene (PTFE) foils and PTFE‐like films prepared by pulsed‐laser deposition (PLD) and plasma polymerization (PP). A structural comparison of the investigated polymers is performed by infrared spectroscopy and dielectric dilatometry. It is shown that dielectric dilatometry (the measurement of the susceptance vs. temperature) provides a simple and elegant means for detecting volumetric transitions in thin nonpolar polymer films. In conventional PTFE foils, the known glass‐like and structural first‐order phase transitions are identified. The structure of pulsed‐laser deposited PTFE strongly depends on the target material, ranging from highly crystalline films showing only structural phase transitions to films strongly deviating from PTFE foils, with structural characteristics comparable to plasma‐polymerized fluorocarbons. The dielectric loss of the highly crystalline PLD films compares favorably with conventional PTFE foils, making the films attractive for new applications in miniature electret devices. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2115–2125, 1999  相似文献   

8.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   

9.
The microstructure of the plasma‐polymerized methylmethacrylate (ppMMA) films is characterized using neutron reflectivity (NR) as a function of the plasma reaction time or film thickness. Variation in the crosslink density normal to the substrate surface is examined by swelling the film with a solvent, d‐nitrobenzene (dNB). In the presence of dNB, uniform swelling is observed throughout the bulk as well as at the air surface, and silicon oxide interfaces. The results indicate that the MMA film prepared by plasma polymerization (ppMMA) has a uniform crosslink density from air surface to substrate surface. Additionally, the scattering length density of the plasma‐polymerized MMA film (SLD ≈ 0.750 × 10−6 Å−2) is much lower than that of a conventional PMMA film (SLD = 1.177 × 10−6 Å−2). The increase in film thickness following dNB sorption is 7.5% and at least 36% for the ppMMA and PMMA films, respectively. This suggests that the films formed by plasma polymerization are different from conventional polymers in chemical structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2522–2530, 2004  相似文献   

10.
Plasma polymerization is a well-established process for the deposition of thin polymeric films on various types of substrates. The potential of this technique for promoting changes of substrate’s wettability constitutes one of the most basic and often reported applications. However, as novel technological demands emerge, and with it the range of available characterizations, plasma polymers are having their niche of applications and properties expanded. The properties of these materials are commonly tailored through the variation of polymer chemistry, postfunctionalization, or other post-treatment processes. That chemical versatility allows the use of plasma polymers in adhesives, water treatment, biomedicine, and many other fields. The creation of nanostructures via lithography or during the deposition process itself constitutes other dynamic fields for new plasma polymer materials. In the current review, the design of materials through plasma polymerization is addressed with the direction given by our expertise in maleic anhydride plasma polymers (MAPP). A non-exhaustive number of applications of plasma polymers is provided to non-specialists as an overview of the materials coming out from the field of this chemical-vapor deposition process. A complete analysis of the literature on maleic anhydride plasma polymers is also performed.  相似文献   

11.
AB2 monomers present opportunities to conduct one‐pot syntheses of highly branched or “hyperbranched” polymers, which are known for their distinct physical and chemical properties relative to linear polymers. This paper describes the synthesis of a deoxybenzoin‐containing AB2 monomer and its use in step‐growth polymerization to prepare branched aromatic polyesters. Highly soluble deoxybenzoin polymers were obtained with degrees of branching reaching 0.36 and estimated molecular weights approaching 20 kDa. The phenolic chain ends of the polymer allowed for post‐polymerization modification by silylation and esterification chemistry. TGA and microscale combustion calorimetry revealed these novel aromatic polyesters to possess the critically important characteristics of flame‐retardant polymers, such as high char yield and low heat release. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1765–1770  相似文献   

12.
The synthesis of novel polymeric dyes by directly attaching toluidine blue O and MPPD via EDC and CDI coupling is described for polymers with enteric properties [poly(methacrylic acid‐co‐ethyl acrylate)]. The polymeric dyes are analyzed by SEC and UV/Vis measurements as well as investigated regarding their dissolution and permeation characteristics. Almost no changes between the modified and nonmodified polymer could be observed by conventional drug studies and a self‐established method for dissolution rates. Also no influence on the film formation properties was observed by SEM measurements. In vitro toxicity studies showed no increase of toxicity compared to the non modified polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2386–2393  相似文献   

13.
Polymers containing side‐chain terpyridine ligands of well‐defined architectures and controllable molecular weights and molecular weight distributions are reported. These polymers were synthesized by the atom transfer radical polymerization (ATRP) of a newly synthesized terpyridine monomer with three functional initiators. The obtained polymers were characterized with 1H NMR and gel permeation chromatography techniques. The efficiency of the ATRP technique and the overall control of the molecular characteristics of the polymers were demonstrated by a kinetic study of the polymerization reaction. Subsequently, the ruthenium(III)/ruthenium(II) complexation chemistry was employed for the attachment of bis(dodecyloxy)‐functionalized terpyridine moieties onto each side 2,2′:6′,2″‐terpyridine unit of the main polymeric backbone. Thus, the grafting approach was successfully combined with the metal–ligand coordination chemistry for the preparation of highly soluble polymeric complexes. The resulting complexes were fully characterized by means of 1H NMR, gel permeation chromatography, and ultraviolet–visible spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4838–4848, 2005  相似文献   

14.
In order to form suitable systems designed for resonance energy transfer, a series of monodisperse methacrylate‐based monomers containing rigid π‐conjugated oligo(phenylene ethynylenes) with different sizes of the conjugated systems ( M1 – M3 ), and therefore different optoelectronic properties, were synthesized and subsequently polymerized using the reversible addition–fragmentation chain transfer polymerization technique ( P1 – P3 ). In addition, these oligomers were also copolymerized with methyl methacrylate. The obtained polymers were characterized by 1H NMR spectroscopy, size exclusion chromatography, and analytical ultracentrifugation. The photophysical properties of the polymers were studied by UV–vis absorption and emission spectroscopy in diluted solutions as well as in thin films and compared to the photophysics of the corresponding monomers. Thereby, changes going from monomeric to polymeric systems could be detected in fluorescence quantum yields and lifetimes pointing to energy trapping, e.g., energy transfer. Donor–acceptor copolymers containing different numbers of monomeric units within the side chain exhibit differences in the emission spectra, indicating that energy trapping in polymers is very sensitive to structural properties such as the chain length. UV–vis absorption spectroscopy as well as time‐resolved lifetime studies indicate intrapolymer and interpolymer energy transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The controlled radical polymerization of mesogen‐jacketed liquid crystalline polymers has triggered great interests in synthesis of complex structures as well as well‐defined linear homopolymers with controlled molecular weight and narrow molecular weight distributions. This review highlights the synthetic strategies of controlled radical polymerization of linear homopolymers, star polymers, superbranched polymers, graft polymers, block copolymers, star block copolymers, and so on. The employed living methods include nitroxide‐mediated radical polymerization and atom transfer radical polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 319–330, 2009  相似文献   

16.
In contrast to chemical routes, enzymatic polymerization possesses favorable characteristics of mild reaction conditions, few by‐products, and high activity toward cyclic lactones which make it a promising technique for constructing polymeric materials. Meanwhile, it can avoid the trace residue of metallic catalysts and potential toxicity, and thus exhibits great potential in the biomedical fields. More importantly, lipase‐catalyzed polymer synthesis usually shows favorable enantio‐, regio‐, and chemoselectivity. Here, the history and recent developments in lipase‐catalyzed selective polymerization for constructing polymers with unique structures and properties are highlighted. In particular, the synthesis of polymeric materials which are difficult to prepare in a chemical route and the construction of polymers through the combination of selective enzymatic and chemical methods are focused. In addition, the future direction is proposed especially based on the rapid developments in computational chemistry and protein engineering techniques.  相似文献   

17.
Thin plasma polymer films were deposited from several liquid monomers (mainly siloxane‐type monomers) in a low‐temperature cascade arc torch (CAT) reactor. The effects of monomer structures and plasma parameters on internal stress in the films were experimentally studied. By appropriately adjusting these factors, the internal stress in the film was reduced nearly two orders of magnitude from 109 to 107 dyn/cm2. It was noted that the polymer films prepared from siloxane‐type monomers showed lower internal stress than their hydrocarbon counterpart. Fourier transform‐infrared spectroscopy (FTIR) studies indicated that a large amount of Si O Si structure from siloxane monomers, which are very flexible bonds, was preserved in the resultant plasma polymers. Ellipsometry results suggested that the internal stress can be qualitatively correlated with the refractive index of the plasma polymer film. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1577–1587, 1999  相似文献   

18.
聚合物Langmuir—Blodgett膜研究进展   总被引:1,自引:1,他引:1  
聚合物LB膜可用两种方法制备,一种是两亲单体成膜再进行聚合反应,另一种为直接从两亲聚合物在亚相表面铺展成膜并转移。本文综合聚合物LB膜的研究状况,包括两亲聚合物和非两亲聚合物,对聚合物LB膜的成膜特点,结构和性能作了描述,并简要介绍了聚合物LB膜的应用前景。  相似文献   

19.
Post‐polymerization modification (PPM) of polymers is extremely beneficial in terms of designing brand new synthetic pathways toward functional complex polymers. Fortunately, the new developments in the field of organic chemistry along with controlled/living radical polymerization (CLRP) techniques have enabled scientists to readily design and synthesize the functionalized‐polymers for wide range of applications via the PPM. In this regard, the reactivity of para‐fluorine atom in the fluorinated aromatic structures toward the nucleophilic substitution reactions has made the polymers possessing this group to become a very strong candidate that can undergo efficient PPM. Besides, it has been proven that the thiol‐functionalized compounds react with the para‐fluorine atom of the pentafluorophenyl group more rapidly and efficiently than the amine‐ and the hydroxyl‐functionalized compounds. Furthermore, the milder experimental conditions to achieve quantitative conversions have led to the reaction between the thiol and the structures possessing pentafluorophenyl groups to be referred to as a click‐type reaction. Given this information, this review article aims to present the scientific developments regarding the thiol‐para‐fluoro “click” (TPF‐click) chemistry, and its impact on PPM to construct novel polymeric structures. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1181–1198  相似文献   

20.
The radio-frequency plasma polymerization technique was used to polymerize aniline onto polymer substrates including perfluorinated ethylene propylene copolymer. The plasma-polyaniline films were characterized by ultraviolet/visible absorption spectroscopy, Fourier transform infrared spectroscopy, electron spin resonance, X-ray photoelectron spectroscopy, scanning electron microscopy, and contact angle measurements. Preliminary conductivity measurements were also carried out. It was demonstrated that the chemical and physical characteristics of the plasma-polymerized poly-aniline films changed significantly with discharge conditions, indicating the possibility for tailoring the structure and properties of the polyaniline films by optimizing the discharge conditions. In particular, the contents of quinoid sequences and aliphatic crosslinking moieties were found to increase with increasing power input and/or discharge duration. By contrast, the number of free radicals trapped in the polyaniline films and their mobility were shown to increase with decreasing the power input and/or discharge duration within the plasma conditions covered in this study. Furthermore, a correlation was found between surface hydrophilicity of the resultant plasma-polyaniline films and the atomic ratio of C to N. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 633–643, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号