首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

2.
The new conjugated polyacetylene derivative dehydrated poly(4-hydroxy-4-phenyl-1-butyne) [dehydrated poly(HPB)] was synthesized from poly(4-hydroxy-4-phenyl-1-butyne) [poly(HPB)], which was obtained by the polymerization of 4-hydroxy-4-phenyl-1-butyne. The resulting dehydrated poly(HPB) was soluble in common organic solvents. The dehydrated poly(HPB) was found to have extended conjugated polyene structure. The dehydrated poly(HPB) was thermally stable up to 300°C. The electrical conductivity of I2-doped dehydrated poly(HPB) was 10−2 S cm−1. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 949–953, 1998  相似文献   

3.
A novel racemic methacrylate, (2-fluorophenyl)(4-fluorophenyl)(2-pyridyl)-methyl methacrylate1 (2F4F2PyMA), was synthesized and polymerized with chiral complexes of N,N′-diphenylethylenediamine monolithium amide (DPEDA-Li) with (−)-sparteine (Sp), (2S, 3S)-(+)-2,3-dimethoxy-1,4-bis(dimethylamino)butane (DDB), and (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (PMP) in toluene at −78°C. The monomer showed higher resistance against methanolysis compared with triphenylmethyl methacrylate (TrMA) and several other analogues. In the asymmetric anionic polymerization of 2F4F2PyMA, PMP was found to be a more effective chiral ligand than DDB and Sp and gave quantitatively an optically active polymer with nearly perfect isotacticity. Enantiomer selection was observed in the polymerization of racemic 2F4F2PyMA with the chiral lithium complexes. Chiral recognition ability of the optically active poly(2F4F2PyMA) was examined by an enantioselective adsorption experiment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2013–2019, 1998  相似文献   

4.
The radical polymerization of N-acryloyl-N′-(p-tolylsulfonyl)urea ( 2 ), prepared easily by the reaction of p-toluenesulfonyl isocyanate with acrylamide, was carried out in DMF, DMSO, or NMP at 60°C by use of AIBN as an initiator to give a polymer 3 in a good yield. Copolymerization parameters of 2 were evaluated by the copolymerization with MMA. Polymer 3 was readily hydrolyzed in an aqueous NaOH solution (1M) at room temperature to give poly(acrylic acid). The reason for the higher activity for hydrolysis of 3 compared to an ordinary amide is discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1515–1519, 1998  相似文献   

5.
A new polythiophene derivative was synthesized by both chemical and electrochemical oxidative polymerization of 1‐(1‐phenylethyl)‐2,5‐di(2‐thienyl)‐1H‐pyrrole (PETPy). Of which the chemical method produces a polymer that is completely soluble in organic solvents. The structures of both the monomer and the soluble polymer were elucidated by nuclear magnetic resonance (1H and 13C NMR) and Fourier transform infrared (FTIR) spectroscopy. The average molecular weight has been determined by gel permeation chromatography to be Mn = 3.29 × 103 for the chemically synthesized polymer. Polymer of PETPy was synthesized via potentiostatic electrochemical polymerization in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent–electrolyte couple. Characterizations of the resulting polymer were performed by cyclic voltammetry, FTIR, scanning electron microscopy, and UV–vis spectroscopy. Four‐probe technique was used to measure the conductivities of the samples. Moreover, the spectroelectrochemical and electrochromic properties of the polymer films were investigated. In addition, dual‐type polymer electrochromic devices based on P(PETPy) with poly(3,4‐ethylenedioxythiophene) were constructed. Spectroelectrochemistry, electrochromic switching, and open circuit stability of the devices were studied. They were found to have good switching times, reasonable contrasts, and optical memories. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2215–2225, 2006  相似文献   

6.
We have designed and synthesized a new polymer, which could be used in the organic thin film transistor (OTFT). Poly[2,6‐bis(3′‐dodecythiophene‐2′‐yl)anthracene] (PDTAn), which is composed with anthracene moiety and dodecyl alkyl thiophene, was synthesized by oxidative polymerization using iron (III) chloride. The mole ratio of FeCl3 and monomer (4.2:1), keeping low temperature during the initiation reaction, amount of solvent, and dropping order were very important for oxidative polymerization without crosslinking. The molecular weight of the polymer (Mw) was measured to be 40,000 with 2.85 of polydispersity index by GPC. The physical and optical properties of the polymer were characterized by differential scanning calorimetry (DSC), cyclic voltammetry (CV), and optical absorption and photoluminescence (PL) spectroscopy. A field‐effect mobility of 1.1 × 10?4 cm2 V?1 S?1, a current on/off ratio of 105, and the Vth at ?15.2 V had been obtained for OTFTs using this polymer semiconductor by solution coating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5115–5122, 2008  相似文献   

7.
Thermal polymerization of DL ‐α‐lipoic acid (LPA) in bulk without any initiator proceeded easily above the melting point of LPA. The molecular weight polymer determined by GPC was high. From the 1H NMR spectra of polymers, poly(LPA) obtained from polymerization of high purity LPA was to consist of cyclic structures, which was confirmed by ESI‐MS. Interlocked polymer consisting of poly(LPA) and dibenzo‐30‐crown‐10 entangled with each other was synthesized by the polymerization of LPA in the presence of dibenzo‐30‐crown‐10. From the DSC analysis of the polymers, glass transition temperature was estimated to be about ?11 °C, but melting point was not observed, indicating that poly(LPA) is an amorphous polymer. By photodecomposition of poly(LPA), Mn was rapidly decreased at the early stage of the decomposition. After that, the Mn of the polymer kept and then was almost constant even for a prolonged reaction time. On the basis of the results, it would be presumed that poly (LPA) obtained form polymerization of high purity LPA includes an interlocked structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   

9.
Here an in‐depth analysis of reversible addition–fragmentation chain transfer (RAFT) polymerization kinetics is reported in order to provide better definition of poly(3‐hexylthiophene) (P3HT) rod–coil block copolymers thru a more thorough understanding of the RAFT polymerization of the coil block. To this end, a new P3HT macroRAFT agent is synthesized and utilized to prepare rod–coil block copolymers with P3HT and poly(styrene), poly(tert‐butylacrylate), and poly(4‐vinylpyridine), and the RAFT polymerization kinetics of each system are fully detailed. This is achieved by a comprehensive analysis of characterization data from 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, and matrix‐assisted laser desorption ionization time of flight spectroscopy, which are used as complementary techniques in order to address difficulties in accurately characterizing the synthesized polymer systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3575–3585  相似文献   

10.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

11.
The substituent effect on the radical polymerization of o‐quinodimethanes, generated by thermal isomerization of benzocyclobutenes, was investigated. Polymerizations of three benzocyclobutenes bearing electron‐withdrawing groups were studied, namely 1‐cyanobenzocyclobutene (1), 1‐chlorobenzocyclobutene (2), and 1‐bromobenzocyclobutene (3). While radical polymerizations of 2 and 3 did not afford any polymer, radical polymerization of 1 afforded n‐hexane‐insoluble polymer(Mn = 5000) in moderate yields at temperatures above 120°C. The structure of the obtained polymer was confirmed to be a ring‐opened polymer(4) by IR, 1H‐, and 13C‐NMR. The yield of the polymer increased with an increase in the initiator concentration. The polymer yield reported in this paper is higher than those of benzocyclobutenes bearing electron‐donating groups, reported previously by the authors. The semi‐empirical molecular orbital calculation supported the contribution of ring‐opening polymerization of spiro‐compounds, rejecting the possibility of 1,4‐polymerization. Lastly, radical copolymerizations of 1 with various comonomers were also performed to obtain the corresponding copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1555–1563, 1999  相似文献   

12.
Graphene–polymer composites of positive‐charged poly(dimethyl aminoethyl acrylate), negative‐charged poly(acrylic acid), and neutral polystyrene were prepared by “graft from” methodology using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene functional RAFT agent (PFRA) modified graphene precursor. Fluorescence spectroscopy and attenuated total reflection infrared (ATR‐IR) evidenced that the PFRA was attached on the graphene basal planes by π–π stacking interactions, which is strong enough to anti‐dissociation in the polymerization mixture up to 80°C. Atomic force microscopy (AFM) revealed that the thickness of a graphene–polymer sheet was about 4.0 nm. Graphene composites of different polymers with the same polymerization degree exhibited similar conductivity; however, when the polymer chain was designed as random copolymer the conductivity was significantly decreased. It was also observed that the longer the grafted polymer chains the lower the conductivity. ATRIR spectroscopy and thermogravimetric analysis were also performed to characterize the as‐prepared composites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The synthesis of block copolymers via polymer conjugation of well‐defined building blocks offers excellent control over the structures obtained, but often several coupling strategies need to be explored to find an efficient one depending on the building blocks. To facilitate the synthesis of polymers with adjustable functional end‐groups for polymer conjugation, we report on the combination of activated ester chemistry with RAFT polymerization using a chain transfer agent (CTA) with a pentafluorophenyl ester (PFP‐CTA), which allows for flexible functionalization of either the CTA prior to polymerization or the obtained polymer after polymerization. Different polymethacrylates, namely PMMA, P(t‐BuMA) and PDEGMEMA, were synthesized with an alkyne‐CTA obtained from the aminolysis of the PFP‐CTA with propargylamine, and the successful incorporation of the alkyne moiety could be shown via 1H and 13C NMR spectroscopy and MALDI TOF MS. Further, the reactive α‐end‐groups of polymers synthesized using the unmodified PFP‐CTA could be converted into azide and alkyne end‐groups after polymerization, and the high functionalization efficiencies could be demonstrated via successful coupling of the resulting polymers via CuAAC. Thus, the PFP‐CTA allows for high combinatory flexibility in polymer synthesis facilitating polymer conjugation as useful method for the synthesis of block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Regiocontrolled polymer (2) having 2-naphthol unit was prepared by oxidative coupling polymerization of bis(2-naphthol) (1). Polymerizations were conducted in dichloromethane in the presence of [di-μ-hydroxo-bis(N,N,N′,N′-tetramethylethylenediamine)copper(II)] chloride [CuCl(OH)TMEDA] under air at room temperature, producing polymers with number-average molecular weights up to 12,000. The structure of polymer 2 was characterized by 270 MHz 1H–NMR and 68.5 MHz 13C–NMR spectroscopies and was estimated to consist almost completely of 1,1′-linkage. The polymer was readily soluble in polar aprotic solvents and tetrahydrofuran at room temperature. Thermogravimetric analysis of polymer 2 showed 10% weight loss at 450°C in nitrogen. The model reactions were studied to clarify the applicability of CuCl(OH)TMEDA for coupling of naphthol derivatives. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3702–3709, 1999  相似文献   

15.
A convenient method for the synthesis of polyester‐containing amino substitutes on the aromatic rings of the backbone has been developed. This polyester was prepared by chemoselective polyesterification of isophthalic acid with bisphenol having an amino group in the presence of the condensing agent diphenyl(2,3‐dihydro‐2‐thioxo‐3‐benzoxazolyl)phosphonate ( 1 ) and 1,5‐diazabicyclo[4,3,0]‐5‐nonene as a base. The model reactions were carried out in detail to elucidate appropriate conditions of chemoselective polyesterification. Direct polycondensation of isopthalic acid with 4,4′‐[1‐(4‐aminophenyl)ethylidene]bisphenol proceeded smoothly under mild conditions and produced the desired polyester with a number average molecular weight of 11,000 and Mw/Mn of 2.22. The polymer obtained was characterized by IR, 1H, and 13C NMR spectroscopies. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 78–85, 2001  相似文献   

16.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

17.
A series of four well‐defined poly(ferrocenyldimethylsilane) (PFS) samples spanning a molecular weight range of approximately 10,000–100,000 g mol−1 was synthesized by the living anionic polymerization of dimethyl[1]silaferrocenophane initiated with n‐BuLi. The polymers possessed narrow polydispersities and were used to characterize the solution behavior of PFS in tetrahydrofuran (THF). The weight‐average molecular weights (Mw ) of the polymers were determined by low‐angle laser light scattering (LALLS), conventional gel permeation chromatography (GPC), and GPC equipped with a triple detector (refractive index, light scattering, and viscosity). The molecular weight calculated by conventional GPC, with polystyrene standards, underestimated the true value in comparison with LALLS and GPC with the triple detection system. The Mark–Houwink parameter a for PFS in THF was 0.62 (k = 2.5 × 10−4), which is indicative of fairly marginal polymer–solvent interactions. The scaling exponent between the radius of gyration and Mw was 0.54, also consistent with marginal polymer–solvent interactions for PFS in THF. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3032–3041, 2000  相似文献   

18.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

19.
A new near‐infrared switchable electrochromic polymer containing carbazole pendant (poly‐SNSC), synthesized by electrochemical polymerization of 2,5‐bis‐dithienyl‐1H‐pyrrole (SNS) main chain, has been prepared. The electrochemical and optical properties of SNSC monomer and its polymer have been investigated. Because of having two different electro‐donor moieties; that is, carbazole and SNS, SNSC gave two separate electrochemical oxidation and also light brown color of the film in the neutral state turn into gray on oxidation. An electrochromic device, contructed in the sandwich configuration [indium tin oxide (ITO)‐coated glass/anodically coloring polymer (poly‐SNSC)//gel electrolyte//cathodically coloring polymer (PEDOT)/ITO‐coated glass] and exhibited a high coloration efficiency (1216 cm2 C–1), a very short response time (about 0.3 s), low driving voltage, and a high redox stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号