首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Curriculum materials can play a major role in shaping teachers’ thinking about instruction and content as well as serve as a support for teachers’ learning. With the inclusion of engineering in NGSS, many teachers may be turning to existing curriculum materials to help them infuse engineering into their science classroom, especially when they do not have the time or opportunity for professional development sessions. In this study, we identified a sample of curriculum materials freely available online to chemistry teachers trying to incorporate engineering in the topics of stoichiometry and/or energy, common topics in secondary chemistry curricula. Using qualitative coding methods, we examined what this sample had to offer the chemistry teachers in the way of developing their understanding of engineering and teaching it. Our findings indicate that within our sample there are limited existing curriculum materials to support teachers’ engineering incorporation into secondary chemistry, and the support for teachers varied in terms of content and usefulness across the materials. The materials provided procedural information for activities but lacked in supports for teacher learning and student development beyond the procedure. Implications for the enactment of NGSS in secondary science along with needs for curriculum development and teacher learning are discussed.  相似文献   

2.
Preparing elementary‐level teachers to teach in alignment with the eight Next Generation Science Standards (NGSS) practices could prove to be a daunting endeavor. However, the process may be catalyzed by leveraging elements of teacher science instruction that inherently attend to the practice standards. In this study, we investigated the science instruction of three grade 3–5 elementary‐level teachers. We used observation, interviews, and surveys to determine the level to which the teachers perceived they taught and engaged in teaching science aligned with the eight NGSS practices. We found that the teachers were partially, and intrinsically implementing several of these practices in their instruction, and at the same time could not articulate the eight NGSS practices. Our results suggest there may be ample opportunity to build on the current science instruction of elementary‐level teachers to bring their instruction into alignment with the NGSS. We found that teachers’ perceive professional development, school culture, and access to additional instructional resources to be essential to their adoption of the NGSS practices.  相似文献   

3.
Next Generation Science Standards (NGSS) science and engineering practices are ways of eliciting the reasoning and applying foundational ideas in science. As research has revealed barriers to states and schools adopting the NGSS, this mixed‐methods study attempts to identify characteristics of professional development (PD) that will support NGSS adoption and to improve teacher readiness. In‐service science teachers from across the nation were targeted for the survey and responses represented 38 states. Research questions included: How motivated and prepared are in‐service 7–12 teachers to use NGSS science and engineering practices? What is the profile of 7–12 in‐service teachers who are motivated and feel prepared to use NGSS science and engineering practices? The study revealed that teachers identified engineering most frequently as a PD need to improve their NGSS readiness. High school teachers rated themselves as more prepared than middle school and all teachers who use Modeling Instruction expressed higher NGSS readiness. These findings and their specificity contribute to current knowledge, and can be utilized by districts in selecting PD to support teachers in preparing to implement the NGSS successfully.  相似文献   

4.
Science is a dynamic discipline, representative of the nature of science. Yet, young science students continue to think everything is already discovered. In this study, we examine why students are not actively doing science. From professional development to student engagement, how are classrooms and students changing as we increase teachers' content knowledge? Teaching practices modeled in professional development can change what occurs in the classroom. Our study was designed to probe differences in two different types of professional development programs both focused on content knowledge. We found that what is modeled by the professional developers has a profound effect on the direction of the classroom. This matched controlled study found that teachers reflect the teaching practice modeled by professional developers through their individual classroom teaching practices. A significant difference was found in cognitive activities and questioning skills between teachers in a professional development program modeling authentic inquiry versus the teachers in a professional development modeling simulated inquiry. While both groups increased the amount of overall inquiry used in the classroom, students whose teachers were in authentic inquiry professional development were engaged in higher cognitive activities and questioning skills. If students are engaged in dynamic classrooms, searching for answers to students' questions, perhaps they will understand that science is a dynamic discipline.  相似文献   

5.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

6.
With the increasing emphasis on integrating engineering into K‐12 classrooms to help meet the needs of our complex and multidisciplinary society, there is an urgent need to investigate teachers' engineering‐focused professional development experiences as they relate to teacher learning, implementation, and student achievement. This study addresses this need by examining the effects of a professional development program focused on engineering integration, and how teachers chose to implement engineering in their classrooms as a result of the professional development. 198 teachers in grades 3–6 from 43 schools in 17 districts participated in a yearlong professional development program designed to help integrate the new state science standards, with a focus on engineering, into their teaching. Posters including lesson plans and student artifacts were used to assess teachers' engineering practices and the implementation in their classrooms. Results indicated that the majority of the teachers who participated in the professional development were able to effectively implement engineering design lessons in their classrooms suggesting that the teachers' success in implementing engineering lessons in their classroom was closely related to the structure of the professional development program.  相似文献   

7.
The Next Generation Science Standards emphasizes the inclusion of engineering practices throughout the K–12 science curriculum. Therefore, elementary educators need to be knowledgeable about engineering and engineering careers so that they can expose their students to engineering. The purpose of this study was to examine the effect of engineering professional development on in‐service elementary teachers’: (a) knowledge and perceptions regarding engineering, and (b) self‐efficacy of teaching engineering. This quantitative study revealed that even one professional development opportunity can help to alleviate some misconceptions about the work of engineers and what constitutes technology, as well as increase teachers’ confidence to teach engineering concepts.  相似文献   

8.
Despite agreement among teacher educators, scholars, and policymakers on the importance of teachers’ subject matter knowledge (SMK), existing models provide limited information about the nature of this foundational component of teacher knowledge. The common assumption is that teachers need to know more about the science subject matter than their students are expected to learn, but what and how much more is underspecified. In order to more characterize science teachers’ SMK, we present the science knowledge for teaching (SKT) model, which has been adapted from the mathematics education literature to apply to science education. The SKT model includes three domains: core content knowledge, specialized content knowledge, and linked content knowledge. We used this model to explore the SMK new secondary chemistry teachers in South Africa and the United States drew on when they explained the conservation of mass and analyzed a related teaching scenario, two important tasks of teaching. Findings indicated these new teachers drew on knowledge from all three SKT domains in order to engage in these tasks of teaching. This result suggests the potential of the SKT model to characterize the nature of science teachers’ SMK and thereby better inform teacher preparation and professional development programs.  相似文献   

9.
Science as inquiry is a key content standard in the National Science Education Standards; however, few secondary science teachers successfully and consistently implement inquiry‐based instruction in their classrooms. This research examines the role of reform‐based curricular materials in influencing the classroom practices of 12 high school chemistry teachers and investigates the role of the teachers' knowledge and beliefs in their implementation of the reform‐based chemistry curriculum. Qualitative and quantitative data were collected in the form of beliefs interviews and classroom observations. The teachers' classroom practices were measured prior to and during the field test of the reform‐based chemistry curriculum. Analysis of the data revealed that teachers' classroom practice became more reform‐based in the presence of the new curriculum; however, the degree of change is related to the teachers' beliefs about teaching and learning, depth of chemistry knowledge, and years of teaching experience. Experienced, out‐of‐discipline teachers with transitional or student‐centered teaching beliefs demonstrated the most growth in reform‐based teaching practices. This study reinforces the need for reform‐based curriculum to assist teachers in implementing the intent of the National Science Education Standards.  相似文献   

10.
Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This study examines the effects on eighth grade science teachers and their students in the context of a PD focused on the integration of information communication technologies and reformed science teaching practices. Findings from this investigation suggest that teachers who participated in PD for two years learned more about technology, improved their practice, and their students’ achievement was significantly higher compared to teachers who participated in one year of the PD or non‐participating peers. Science educators face multiple challenges as they attempt to deliver instruction in fundamentally different ways than what they experienced as learners. The delivery of this professional learning suggest that PD for science teachers should include educative learning experiences if understandings of reforms supported by research are to be realized.  相似文献   

11.
Project‐based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to PBS implementation is a misunderstanding of the elements of PBS. Identification of these misunderstandings as well as implementation challenges could inform professional development. This case study examined 24 teachers’ understanding and implementation of PBS during participation in a consecutive three‐year, comprehensive professional development program. Results provide insight as to the process they followed in the transition to implementing PBS. Measures included classroom observations, reflective interviews, and attitudinal surveys. Results showed that teachers developed the knowledge, confidence, and understanding to implement PBS but in most cases it took at least two to three years for positive results to become evident. Teachers struggled to develop adequate driving questions that provided project‐focused lessons. Other obstacles included teacher resistance to student‐directed instruction, confusing inquiry‐based instruction with hands‐on activities, and inability to motivate students to work in collaborative teams. While challenging, over time the teachers developed the knowledge, desire, and skills to implement PBS.  相似文献   

12.
Science teacher educators use examples of practice to support teacher candidates (TCs) learning to engage in new forms of science teaching. However, interpretation of these examples assumes a level of expertise about practice TCs lack. This article describes a study designed to determine some of the differences between expert teachers' and TCs' professional pedagogical vision for science teaching. Specifically, the study examines what each group attends to (highlights) in examples of science teaching and how they interpret the events they attend to (codes). Both groups were asked to analyze video of classroom science teaching. Differences were found between TCs and expert teachers in terms of both highlighting and coding of science teaching practice. Four key areas of difference are described in detail: actor focus, questions, grain size, and enactment. The implications for science teacher education are discussed, in particular a set of tools and teacher education practices to support acculturating TCs into more a sophisticated professional pedagogical vision for science teaching. This article features a Research to Practice Companion Article . Please click on the supporting information link below to access.  相似文献   

13.
Constructivist perspectives on learning have helped math and science educators better understand how students make sense of their experiences. Unfortunately, the intuitively appealing explanations of how learners construct knowledge have not been translated into a systematic body of pedagogical methods or a coherent curricular approach. Constructivist teaching is often portrayed in the literature as an alternative to traditional instructional approaches or as a toolbox of pedagogical techniques. These incomplete images do little to help practitioners understand constructivism or how it should be integrated into the life of the classroom. There may, however, be help for teachers in conceptualizing constructivism as a foundation for classroom practice. Recent anthropological investigations of learning have directed attention to the culture of classroom environments and the characteristic norms, beliefs, and practices that participants share in their dealings with one another. This article contends that envisioning the classroom as an articulated system of beliefs and practices not only serves an explanatory function for learning theorists but, more importantly, serves as a heuristic for teachers in conceptualizing constructivism and offers a starting point for teachers in implementing constructivist practices.  相似文献   

14.
Three mathematics and science educators reexamine and reflect on their teaching within the context of the American Association for the Advancement of Sciences (AAAS) and National Council of Mathematics' call to make math and science education accessible to all. The paper highlights the importance of teachers reflecting on their teaching practices in order to create opportunities for their students especially those in the urban setting. The educators argue that teachers' reflection on their teaching can cause them to recognize and validate their students' ways of knowing as they identify the students' hidden/concealed abilities that are often masked by their behaviors. The educators discuss their experiences and highlight the lessons that they learned about ways to prepare teachers to successfully teach math and science students in urban settings. Culturally responsive pedagogy and cultural competency are critical skills that teachers need to develop in order to teach all children, especially those in the math and science classroom in the urban setting.  相似文献   

15.
This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design‐based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education. Participants included 23 STEM teachers from six schools (three rural, two suburban, and one urban). Data were gathered via lesson implementation plans and classroom observations. Teachers demonstrated strength in planning for standards‐ and engineering design‐based lessons, incorporating engineering practices within their respective implementation plans, and aligning their plans with content and design process standards. Missing from their plans was attention to science concepts and their placement, use, and application within a design task. Classroom observations indicated that the teacher participants gave priority to “front loading,” the design process by concentrating more of their instructional time on problem identification and planning and less time on testing designs, communicating performance results, and redesigning. Measures utilized in this study provided insight into the content of teachers' planning and subsequent instruction and suggest potential for capturing content planning in the context of classrooms in which teachers are attempting to integrate novel curriculum, such as the new standards for engineering practices.  相似文献   

16.
Before we can effectively apply specific interventions through professional development, it is important to determine what is occurring in our high school physics classrooms. This study investigated common professional practices in physics teaching among a representative sample group of schools and teachers from a diverse, geographically large population. An adaptation of a convergent parallel design was utilized in this study. Three separate parallel studies were conducted to answer the overarching research question, what is the nature of the secondary physics classroom in our high schools as they exist today? The results provide a unique picture of the variables impinging on physics teachers in their current classroom setting that converges from the particular viewpoints found in each of the parallel studies.  相似文献   

17.
Professional development for teachers has become a key component for reform in teaching, learning, and curriculum change. This report describes a model of professional development designed to improve the skills and knowledge of teams of special education and regular education teachers in science, mathematics, and technology instruction. The comprehensive model included summer and academic year content and methodology-focused workshops and summer “practician” experiences. It was designed to link those factors impacting teacher practices and interventions with teachers' beliefs in instruction. The training component for teachers included opportunities for collaborative teaching, upgrading knowledge of math and science subject matter, and identifying, integrating, and practicing alternative approaches for teaching science and math that address the needs of special education students, with a focus on techniques for adapting instruction to specific disabilities. The program led to development of coping skills and persistence in the teaching of science and math for all students. As a result, strong efficacy expectations have been developed through repeated experiences of success with children in a classroom environment. Remaining issues still to be addressed include classroom management, teaching in a heterogeneous classroom, and further improvement of content expertise of teachers.  相似文献   

18.
One model of engineering integration that has shown promise is the use of engineering design as a context to support teachers as they conceptualize and plan integrated STEM lessons. However, integrating engineering into science instruction presents a number of challenges, especially at the elementary level, and the implementation of high-quality engineering design-based instruction is not often what is actualized in the classroom. This study investigated how teachers operationalized an engineering design-based lesson in their classroom by examining what elements of engineering teachers chose to include within in their lesson plan and enact in the classroom. Participants included 20 triads composed of teachers, student teachers, and engineering graduate students. Utilizing a multiple case study approach, this study found that there were four main groupings related to how teachers operationalized engineering design-based instruction in their classrooms. Results suggest that even though there were several engineering design elements that were included in a majority of the lesson plans, such as context, constraints, materials exploration, and building, and testing solutions, some characteristics were found to be more influential than others when looking at how to help teachers to implement high-quality engineering design-based instruction.  相似文献   

19.
Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K–12 science education standards. However, there is relatively little is known about effective ways of teaching science through engineering design. The study explores the approaches or strategies used by a sixth grade science teacher to teach science and engineering in an integrative manner. Classroom observations, teacher interview, and student surveys were used to study the features of engineering integration implemented by the teacher and the changes in student interest in science and engineering by participating in an engineering design‐based science unit. Findings suggest that the teacher explicitly included practices and core ideas from engineering and science; used an engaging, motivating engineering challenge; and provided students with opportunities to be autonomous. Students engaged in the activities in the engineering unit and their interest level slightly increased. The results suggest that the three strategies that the teacher used to teach engineering and science are important foundations of integrated science and engineering education.  相似文献   

20.
This study focused on two middle schools in the central US who participated in collaborative, sustained, whole‐school professional development in implementing inquiry as part of National Science Education Standards, or standards‐based instructional practices. Participants were involved in their second year of the professional development experience. The research question explored was, “What barriers do science teachers encounter when implementing standards‐based instruction while participating in effective professional development experiences?” Qualitative data collected in the form of teacher interviews and classroom observations were utilized and were analyzed using a barrier to reform rubric. Findings indicate that even with effective professional development, science teachers still encounter technical, political, and cultural barriers to implementation. More support is required for professional development efforts to be successful, such as resources and time, as well as administrative buy‐in and support. Findings also revealed that even the best intended professional development efforts do not reveal and address existing beliefs for all teachers. Implications for future science education reform stakeholders are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号