首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present explanatory mixed‐method design is to examine the effectiveness of a developmental intervention, Embedded Metacognitive Prompts based on Nature of Science (EMPNOS) to teach the nature of science using metacognitive prompts embedded in an inquiry unit. Eighty‐three (N = 83) eighth‐grade students from four classrooms were randomly assigned to an experimental and a comparison group. All participants were asked to respond to a number of tests (content and nature of science knowledge) and surveys (metacognition and self‐regulatory efficacy). Participants were also interviewed. It was hypothesized that the experimental group would outperform the comparison group in all measures. Partial support for the hypotheses was found. Specifically, results showed significant gains in content knowledge and nature of science knowledge of the experimental group over the comparison group. Qualitative findings revealed that students in the comparison group reported scientific thinking in similar terms as the scientific method, while the experimental group reported that scientists were creative and had to explain events using evidence, which is more closely aligned to the aspects of the nature of science. EMPNOS may have implications as a useful classroom tool in guiding students to check their thinking for alignment to the nature of science.  相似文献   

2.
Professional scientists who pursue a teaching credential bring a great deal of background to students in a classroom, but they may have barriers to the ways they portray the field of science. This study used a multiple‐case replication design to determine the role of epistemology in lesson plans of seven scientists becoming teachers. Data sources for this study included: (a) written assignment addressing student scientific epistemology at the beginning of the course, (b) fully‐developed written lesson plans for a one‐month period, and (c) interviews with participants three months after the course was completed. Two major types of instructional designers, schema‐centered teachers and activity‐centered teachers, emerged from the data. The schema‐centered teachers believed teaching to be a process of developing ideas and approached lesson planning initially from a general perspective and worked to a more specific orientation. The activity centered teachers expressed the need to show students how to think about science rather than allowing students to construct their own conception, and viewed teaching knowledge about the scientific enterprise as an activity to be undertaken only at the beginning of the year.  相似文献   

3.
Despite historical national efforts to improve elementary science education, science instruction continues to be marginalized, varying by state. This study was designed to address the ongoing challenge of educating elementary preservice teachers (PSTs) to teach science. Elementary PSTs are one of the science education community's major links to schools and science education reform. However, they often lack a strong background in science, knowledge of effective science teaching strategies, and consequently have low confidence and self‐efficacy. This investigation explored the initial learning of elementary PSTs using an interdisciplinary model of a scientific classroom discourse community during a science methods course. Findings post‐methods course suggested that the PSTs gained confidence in how to teach inquiry‐based elementary science and recognized inquiry‐based science as an effective means for engaging student learning. Additionally, PSTs embraced the interdisciplinary model as one that benefits students' learning and effectively uses limited time in a school day.  相似文献   

4.
This study examined the conceptions of nature of science (NOS) possessed by a group of gifted seventh‐grade students from Taiwan. The students were engaged in a 1‐week science camp with emphasis on scientific inquiry and NOS. A Chinese version of a NOS questionnaire was developed, specifically addressing the context of Chinese culture, to assess students' views on the development of scientific knowledge. Pretest results indicated that the majority of participants had a basic understanding of the tentative, subjective, empirical, and socially and culturally embedded aspects of NOS. Some conflicting views and misconceptions held by the participants are discussed. There were no significant changes in students' views of NOS after instruction, possibly due to time limitations and a ceiling effect. The relationship between students' cultural values and development of NOS conceptions and the impact of NOS knowledge on students' science learning are worth further investigation.  相似文献   

5.
With recent national calls for the reform of science education have come standards that delineate not only science content but also assessment, pedagogy, and teachers’ professional development. If teachers must teach science differently, then teacher preparation must change. This study asked 31 inservice secondary science teachers to complete a survey about topics for inclusion in a secondary science methods course. Respondents ranked a list of prespecified topics and had an opportunity to suggest other topics for inclusion in the course. Results showed that the majority of prespecified potential topics were judged important enough by these teachers to warrant inclusion in a methods course, though no individual added topic appeared on more than two surveys. Results demonstrate that these teachers believe teaching many of the traditional topics in science methods courses is still needed. In addition, they advocated the inclusion of several topics that either represent recent technological and theoretical advances, or longstanding ideas that have recently received considerable attention.  相似文献   

6.
This study aimed to examine the representations of nature of science (NOS) in the eight histories of science selected from three series of integrated science textbooks used in junior high school in China. Ten aspects of NOS were adopted in the analytical framework. It was found that NOS had not been well treated in the selected histories of science in the three series of science textbooks. Specifically, it was found that the empirical and inferential aspects were treated better than other aspects, and discrepancies existed among the three series of science textbooks and among the eight histories of science in terms of dealing with the target NOS aspects. Implications for addressing NOS in historical materials in science textbooks were discussed in the final part of this paper.  相似文献   

7.
This article is about an investigation of six middle school science teachers’ beliefs and instructional practice about the coherence of the science they teach as articulated by National Science Education Standards ( NRC, 1996 ). Many well intentioned reform efforts focus on improving content knowledge of teachers, but many classroom teachers regularly miss opportunities to provide conceptual connections within the science ideas building the sense of coherence in science. This investigation involved a quasi experimental study to examine the efficacy of a method for collecting data about middle school science teachers’ thinking about science and to determine if they teach science coherently. The teachers were surveyed, interviewed, provided concept maps about their thinking of the science they taught, and observed to investigate whether their practice reflects their beliefs. An examination of the teachers’ beliefs, stated and unstated curriculum, the connections among topics and the nature of science revealed that one, the observation tool may have merit for identifying the content and connections among science topics, and two, that teachers ‘stated beliefs consistent with the National Science Education Standards’ vision for coherent science, did not match their demonstrated practice. The content taught could be characterized in three ways; coherent content and few connections, coherent content and connections, and not coherent content. This indicates for this group of middle school science teachers that knowing how they think about science and how those beliefs are reflected in their teaching is complex. This study can inform teacher education and professional development efforts about the need to move beyond just content enhancement to examine prior beliefs about the connections of concepts within science.  相似文献   

8.
High‐quality after‐school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science‐related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content knowledge acquisition and attitudes toward science may aid in the development of effective science‐related interventions. We investigated the impact of a semester‐long after‐school intervention utilizing an inquiry‐based infectious diseases curriculum (designed for use after‐school) on 63 urban students' content knowledge and aspects of their attitudes toward science. Content knowledge increased 24.6% from pretest to posttest. Multiple regression analyses indicated suggested that the “self‐directed effort” subscale of the Simpson–Troost Attitude Questionnaire—Revised best predicted increases in students' science content knowledge. The construct “science is fun for me” served as a suppressor effect. These findings suggest that future after‐school programs focusing on aspects of attitudes toward science most closely associated with gains in content knowledge might improve students' enthusiasm and academic preparedness for additional science coursework by improving student attitudes toward their perceptions of their self‐directed effort.  相似文献   

9.
Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed‐methods study, we report the impacts of an inquiry‐based science course on preservice elementary teachers' self‐efficacy for science and science teaching, understanding of science, and willingness to teach it in their future careers. Our findings suggest that for some students, the inquiry‐based science course positively influenced their self‐efficacy for science and science teaching. Gains were made in a majority of students' conceptual understanding of science, understanding of the science process and scientific research, and confidence with science and science teaching. The subjects did not experience the course uniformly, however. Rather, there appeared to be two distinct groups, one on a trajectory of improving their outlook on science teaching and one worsening. The results presented here therefore provoke some interesting questions regarding preservice elementary teachers' preparation for science teaching.  相似文献   

10.
《Change》2012,44(2):34-35
Abstract

Except for modest sections of a few professional journals, the disciplines of most college faculty offer the world little evidence that most of us spend most of our time teaching. Political scientists not only are representative of college faculty in this regard, but are perhaps a “worst case.” Because higher education has the role of preparing citizens to think critically and act democratically, one would expect that political scientists would provide the world extensive evidence that they teach and that they teach for and about democratic society. The contents of political science, social science, and other disciplinary journals, however, give little hint of either role. They suggest instead that those of us in academe make our living grappling with each other—in print and, increasingly, electronically—over age-old dilemmas of human prospects, current conundrums, and new math models to explain the actions of nations and people.

Truth be told, this is how we gain professional reputations even though most of us gain our bread and butter by teaching. The dichotomy of our ordinary work and our system of professional recognition is only one irony in the professional life of faculty. We also face preparing citizens to think critically and act democratically while we work in bureaucratic, hierarchical, and/or elitist institutions with a contrary contextual curriculum.  相似文献   

11.
The goal of this article is to inform professional understanding regarding preservice science teachers’ knowledge of engineering and the engineering design process. Originating as a conceptual study of the appropriateness of “knowledge as design” as a framework for conducting science teacher education to support learning related to engineering design, the findings are informed by an ongoing research project. Perkins’s theory encapsulates knowledge as design within four complementary components of the nature of design. When using the structure of Perkins’s theory as a framework for analysis of data gathered from preservice teachers conducting engineering activities within an instructional methods course for secondary science, a concurrence between teacher knowledge development and the theory emerged. Initially, the individuals, who were participants in the research, were unfamiliar with engineering as a component of science teaching and expressed a lack of knowledge of engineering. The emergence of connections between Perkins’s theory of knowledge as design and knowledge development for teaching were found when examining preservice teachers’ development of creative and systematic thinking skills within the context of engineering design activities as well as examination of their knowledge of the application of science to problem‐solving situations.  相似文献   

12.
To meet the challenge to reform mathematics education, effective opportunities to learn are needed to promote prospective elementary school teachers' development of the knowledge base that supports teaching for mathematical proficiency. This article describes three professional development interventions and their influence on prospective teachers' beliefs about mathematics, how children learn mathematics, and mathematics teaching. The three interventions consisted of problem‐solving journals, structured interviews, and peer teaching that were integrated in a PreK‐6 mathematics methods course. Results of precourse and postcourse survey data are included that measured 24 prospective teachers' beliefs about the knowledge base needed to teach elementary school mathematics. Data indicated that using these interventions and other course experiences facilitated change in the prospective teachers' beliefs, with a shift toward reform‐oriented mathematics education perspectives.  相似文献   

13.
Creating scientifically literate students is a common goal among educational stakeholders. An understanding of nature of science is an important component of scientific literacy in K‐12 science education. Q methodology was used to investigate the opinions of preservice and in‐service teachers on how they intend to teach or currently teach science. Q methodology is a measurement tool designed to capture personal beliefs. Participants included 40 preservice and in‐service elementary and secondary science teachers who sorted 40 self‐referential statements regarding science instruction. The results identified three epistemologies toward teaching science: A Changing World, My Beliefs, and Tried and True. Participants with the A Changing World epistemology believe evidence is reliable, scientific knowledge is generated in multiple ways, and science changes in light of new evidence. The My Beliefs epistemology reflects that scientific knowledge is subject to change due to embedded bias, science is affected by culture and religion, and evolution should not be taught in the classroom. The Tried and True epistemology views a scientific method as an exact method to prove science, believes experiments are crucial for scientific discoveries, absolute truth exists in scientific knowledge, and society and cultural factors can be eliminated from investigations. Implications for preservice teacher education programs and in‐service teacher professional development are addressed.  相似文献   

14.
但琦  赵静  付诗禄 《大学数学》2002,18(6):21-24
拟就以下内容进行了探讨 .(i)该课程究竟应该讲什么内容、怎样讲 ,才能使学生在较短的时间内 ,掌握数学建模的基本知识和基本方法 ;(ii)该课程怎样与数学实验更好地结合起来 ,以培养学生的动手能力 ;(iii)该课程应采用什么样的教学手段和教学方法 ,才能加大课堂信息量 ,加强直观性和趣味性等 .我们的解决方法是 :(i)以介绍建立数学模型为主 ,按数学知识内容的不同来选取数学模型的典型案例 ,通过案例介绍 ,使学生学会怎样建立模型 .(ii)适当介绍数学软件包 ,让学生掌握运用软件包来求解模型能力 .(iii)做大作业 ,教员给出题目 ,学生自己收集资料、讨论、上机求解 ,最后写出报告 .(iv)开展多媒体教学 ,对主要的教学内容进行模块化教学 ,将建模分成 1 4个专题 ,做成 1 4个多媒体课件  相似文献   

15.
Many educational researchers seem to concur with the idea that, among other factors, the teacher's teaching style has some impact on student learning and the perceptions students develop about science learning and the work of scientists. In this study, nine middle grades teachers' teaching styles were assessed using the Draw‐a‐Science‐Teacher‐Teaching Test Checklist (DASTT‐C) and categorized along a continuum from didactic to inquiry/constructivist in orientation. Students' (n = 339) perceptions of scientists were determined using the Draw‐a‐Scientist‐Test Checklist (DAST‐C). Teachers' teaching styles and their students' perceptions of scientists were then compared using nonparametric correlational methods. Results showed that no significant correlation existed between the two measures for the population studied. Although the study provides no understanding about when or how relationships developed between teachers' teaching styles and students' perceptions of scientists, trends in the results give rise to some concerns regarding the preparation of future science teachers and the in‐service development of practicing teachers.  相似文献   

16.
We discuss a major change in the way we teach our first-year statistics course. We have redesigned this course with emphasis on teaching critical thinking. We recognized that most of the students take the course for general knowledge and support of other majors, and very few are planning to major in statistics. We identified the essential aspects of a first-year statistics course, given this student mix, focusing on a simple question, ‘Given this is the last chance you have to teach statistics, what are the essential skills students need?’ We have moved from thinking about statistics skills needed for a statistician to skills needed to participate in today's society. We have changed the way we deliver the course with less emphasis on lectures and more on alternative resources including on-line tutorials, Excel, computer-based skills testing, web-based learning materials and smaller group activities such as study groups and example classes. Feedback from students shows that they are very receptive and enthusiastic.  相似文献   

17.
Research indicates there is a need for teachers to experience multiple mastery experiences with engineering teaching in order to improve teaching engineering self‐efficacy. To prepare future K–5 teachers to teach the engineering design process, one science methods course integrated 2‐day engineering mini‐units into the class meeting and school‐based field experience. The preservice teachers participated as students in an exemplar mini‐unit and then designed their own mini‐unit, which they later taught to K–5 students. Pre‐ and post‐testing of the preservice teachers indicated significant improvement in engineering pedagogical content knowledge self‐efficacy, engagement self‐efficacy, and disciplinary self‐efficacy. Significant improvement was not observed in engineering outcome expectancy.  相似文献   

18.
A model of a 1-year, graduate level content-specific teacher preparation program is described that integrates learning about and teaching with electronic technologies as an integral component in teaching and learning science and mathematics, grades 3–12. The development of an integrated knowledge structure of science/math, technology, and teaching science/math with technology requires experiences focused on an integration of three important components: planning during the preactive stage, monitoring and regulating during the interactive stage, and assessing and revising in the postactive stage of teaching. The program model features an integration of experiences in incorporating technology in teaching science and math that specifically relate or interconnect their thinking in these three stages of instruction.  相似文献   

19.
Mathematics and science have similar learning processes (SLPs) and it has been proposed that courses focused on these and other similarities promote transfer across disciplines. However, it is not known how the use of these processes in lessons taught to children change throughout a preservice teacher education course or which are most likely to transfer within and between disciplines. Three hundred and ninety lesson plans written by 113 preservice teachers (PSTs) from 10 sections of an elementary mathematics/science methods course were analyzed. PSTs taught an eight‐lesson sequence to children: five science lessons followed by three mathematics lessons. The findings suggested that: (a) PSTs needed to only teach three mathematics lessons, after five science lessons, to reach the same number of SLPs used in the five science lessons; (b) some SLPs are highly correlated processes (HCPs) and are more likely to transfer within and between science and mathematics lessons; and (c) PSTs needed to teach no mathematics lessons, after four science lessons, to reach the same number of HCPs used in the four science lessons. Implications include centering courses on multiple and varied representations of learning processes within problem‐solving, and HCPs may be essential similarities of problem‐solving which promote transfer.  相似文献   

20.
Proof and reasoning are central to learning mathematics with understanding. Yet proof is seen as challenging to teach and to learn. In a capstone course for preservice teachers, we developed instructional modules that guided prospective secondary mathematics teachers (PSTs) through a cycle of learning about the logical aspects of proof, then planning and implementing lessons in secondary classrooms that integrate these aspects with traditional mathematics curriculum in the United States. In this paper we highlight our framework on mathematical knowledge for teaching proof and focus on some of the logical aspects of proof that are seen as particularly challenging (four proof themes). We analyze 60 lesson plans, video recordings of a subset of 13 enacted lessons, and the PSTs’ self- reported data to shed light on how the PSTs planned and enacted lessons that integrate these proof themes. The results provide insights into successes and challenges the PSTs encountered in this process and illustrate potential pathways for preparing PSTs to enact reasoning and proof in secondary classrooms. We also highlight the design principles for supporting the development of PSTs’ mathematical knowledge for teaching proof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号